Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
263
Добавлен:
30.03.2015
Размер:
320.51 Кб
Скачать

Адаптивные реакции организма при гипоксии

Действие на организм фактора, вызывающего гипоксию любого типа, сопровождается включением взаимосвязанных процессов двух категорий:

• обусловливающих развитие гипоксии и

• обеспечивающих адаптацию организма к гипоксии и направленных на поддержание гомеостаза в данных условиях.

Процессы первой категории описаны выше. Ниже характеризуются общие механизмы адаптации организма к гипоксии.

Общая характеристика процесса адаптации к гипоксии

• При действии даже умеренной гипоксии сразу формируется поведенческая реакция, направленная на поиск среды существования, оптимально обеспечивающая уровень биологического окисления. Человек может направленно менять условия жизнедеятельности с целью устранения состояния гипоксии.

• Возникшая гипоксия служит системообразующим фактором: в организме формируется динамичная функциональная система по достижению и поддержанию оптимального уровня биологического окисления в клетках.

† Система реализует свои эффекты за счёт активации доставки кислорода и субстратов метаболизма к тканям и включения их в реакции биологического окисления.

† В структуру системы входят лёгкие, сердце, сосудистая система, кровь, системы биологического окисления и регуляторные системы.

Условно адаптивные реакции подразделены на две группы: экстренной адаптации и долговременной адаптации.

Экстренная адаптация

Механизмы экстренной адаптации к гипоксии рассмотрены на рис. 15–8.

Рис. 15–8. Механизмы экстренной адаптации организма к гипоксии.

• Причина активации механизмов срочной адаптации организма к гипоксии: недостаточность биологического окисления. Как следствие, снижается содержание АТФ в тканях, необходимого для обеспечения оптимального уровня жизнедеятельности.

• Ключевой фактор процесса экстренной адаптации организма к гипоксии — активация механизмов транспорта O2 и субстратов обмена веществ к тканям и органам. Эти механизмы предсуществуют в каждом организме. В связи с этим они активируются сразу (экстренно, срочно) при возникновении гипоксии и снижении эффективности биологического окисления.

• Повышенное функционирование систем транспорта кислорода и субстратов метаболизма к клеткам сопровождается интенсивным расходом энергии и субстратов обмена веществ. Таким образом, эти механизмы имеют высокую «энергетическую и субстратную цену». Именно это является (или может стать) лимитирующим фактором уровня и длительности гиперфункционирования.

Система внешнего дыхания

Недостаточность биологического окисления при гипоксии ведёт к гипервентиляции — возрастанию объёма альвеолярной вентиляции.

Причины: активация афферентной импульсации от хеморецепторов (аорты, каротидной зоны сонных артерий, ствола мозга и других регионов организма) в ответ на изменение показателей газового состава крови (снижение раО2, увеличение раCO2 и др.).

Механизмы: увеличение частоты и глубины дыхательных движений и числа раскрывшихся резервных альвеол. В результате минутный объём дыхания (МОД) может возрасти более чем на порядок: с 5–6 л в покое до 90–110 л в условиях гипоксии.

Сердце

При острой гипоксии функция сердца значительно интенсифицируется.

Причина: активации симпатикоадреналовой системы.

Механизмы

• Тахикардия.

• Увеличение ударного выброса крови из сердца.

• Возрастание интегративного показателя функции сердца — минутного объёма кровообращения (сердечного выброса крови). Если в покое он равен 4–5 л, то при гипоксии может достигать 30–40 л;

• Повышение линейной и объёмной скорости кровотока в сосудах.

Сосудистая система

В условиях гипоксии развивается феномен перераспределения, или централизации кровотока.

Причины и механизмы феномена централизации кровотока

• Активация в условиях гипоксии симпатикоадреналовой системы и высвобождение катехоламинов. Последние вызывают сужение артериол и снижение притока крови по ним к большинству тканей и органов (мышцам, органам брюшной полости, почкам, подкожной клетчатке и др.).

• Быстрое и значительное накопление в миокарде и ткани мозга метаболитов с сосудорасширяющим эффектом: аденозина, простациклина, ПгЕ, кининов и других. Эти вещества не только препятствуют реализации вазоконстрикторного действия катехоламинов, но и обеспечивают расширение артериол и увеличение кровоснабжения сердца и мозга в условиях гипоксии.

Последствия

• Расширение артериол и увеличение кровоснабжения мозга и сердца.

• Одновременное сужение просвета артериол и уменьшение объёма кровоснабжения в других органах и тканях: мышцах, подкожной клетчатке, сосудах брюшной полости, почках.

Система крови

Острая гипоксия любого генеза сопровождается адаптивными изменениями в системе крови:

• Активацией выброса эритроцитов из костного мозга и депо крови (в последнем случае — одновременно с другими форменными элементами крови).

Причина: высокая концентрация в крови катехоламинов, тиреоидных и кортикостероидных гормонов. В результате при острой гипоксии развивается полицитемия.

Следствие: повышение кислородной ёмкости крови.

• Повышением степени диссоциации HbO2 в тканях.

Причины

† Гипоксемия, особенно в капиллярной и венозной крови. В связи с этим именно в капиллярах и посткапиллярных венулах происходит возрастание степени отдачи кислорода HbO2.

† Ацидоз, закономерно развивающийся при любом типе гипоксии.

† Повышенная в условиях гипоксии концентрация в эритроцитах 2,3‑дифосфоглицерата, а также других органических фосфатов: АДФ, пиридоксальфосфата. Эти вещества стимулируют отщепление кислорода от HbO2.

• Увеличением сродства Hb к кислороду в капиллярах лёгких. Этот эффект реализуется при участии органических фосфатов, в основном — 2,3‑дифосфоглицерата. При этом важное значение имеет свойство Hb связывать значительное количество кислорода даже в условиях существенно сниженного pО2 в капиллярах лёгких. При pО2 равном 100 мм рт.ст. образуется 96% HbO2, при pО2 80 и 50 мм рт.ст. — 90 и 81% соответственно.

Системы биологического окисления

Активация метаболизма — важное звено экстренной адаптации организма к острой гипоксии. Это обеспечивает:

• Повышение эффективности процессов усвоения кислорода и субстратов окисления тканями организма и доставки их к митохондриям.

• Активацию ферментов окисления и фосфорилирования, что наблюдается при умеренном повреждении клеток и их митохондрий.

• Увеличение степени сопряжения процессов окисления и фосфорилирования адениннуклеотидов: АДФ, АМФ, а также креатина.

• Активацию гликолитического пути окисления. Этот феномен регистрируется при всех типах гипоксии, особенно на ранних её этапах.

Причины активации гликолиза

† Снижение внутриклеточного уровня АТФ и его ингибирующего влияния на ферменты гликолиза.

† Увеличение содержания в клетках продуктов гидролиза АТФ (АДФ, АМФ, неорганического фосфата), активирующих ключевые гликолитические ферменты.

Долговременная адаптация

Причина включения механизмов долговременной адаптации к гипоксии: повторная или продолжающаяся недостаточность биологического окисления умеренной выраженности.

Условия включения механизмов долговременной адаптации к гипоксии

• Повторное или длительно продолжающееся воздействие умеренной гипоксии, вызывающее многократную активацию срочных механизмов адаптации. Это обеспечивает формирование структурно‑функциональной основы для процессов долговременного адаптации к гипоксии. При этом существенно, чтобы интервал между эпизодами умеренной гипоксии не был слишком велик или мал.

† Большой интервал приведёт к ликвидации структурных (субклеточных, клеточных, органно‑тканевых) адаптивных изменений.

† Малый интервал — будет недостаточен для их развития и закрепления.

• Выраженность умеренной гипоксии

† Гипоксия слишком малой выраженности не активирует механизмов срочной и долговременной адаптации. Регистрируются лишь преходящие реакции в диапазоне физиологического ответа на снижение биологического окисления.

† Гипоксия чрезмерной выраженности вызывает срыв процесса адаптации, расстройства функций, обмена веществ и повреждение структур организма.

• Оптимальное состояние жизнедеятельности организма. Это позволяет развить механизмы срочной адаптации и закрепить структурно‑функциональные изменения, лежащие в основе долговременной адаптации к гипоксии. Недостаточность каких‑либо систем организма (дыхательной, ССС, крови, тканевого метаболизма) и/или пластических процессов делают невозможным осуществление адаптивных процессов к гипоксии (как и к другим экстремальным факторам).

Механизмы долговременной адаптации

Долговременная адаптация к гипоксии реализуются на всех уровнях жизнедеятельности: от организма в целом до клеточного метаболизма.

• Особенности механизмов долговременной адаптации к гипоксии

† Процессы приспособления к повторной и/или длительной гипоксии формируются постепенно в результате многократной и/или продолжительной активации срочной адаптации к гипоксии.

† Переход от несовершенной и неустойчивой экстренной адаптации к гипоксии к устойчивой и долговременной адаптации имеет существенное биологическое (жизненно важное) значение: это создаёт условия для оптимальной жизнедеятельности организма в новых, часто экстремальных условиях существования.

† Основой перехода организма к состоянию долговременной адаптированности к гипоксии является активация синтеза нуклеиновых кислот и белков.

† Синтетические процессы доминируют в органах, обеспечивающих транспорт кислорода и субстратов обмена веществ, а также в тканях, интенсивно функционирующих в условиях гипоксии.

† В отличие от экстренной адаптации к гипоксии, при которой ведущее значение имеет активация механизмов транспорта O2 и субстратов обмена веществ к тканям, основным звеном долговременного приспособления к гипоксии является существенное повышение эффективности процессов биологического окисления в клетках.

† Системы, обеспечивающие доставку кислорода и продуктов обмена веществ к тканям (внешнего дыхания и кровообращения), при устойчивой адаптации к гипоксии также приобретают новые качества: повышенные мощность, экономичность и надёжность функционирования.

• Системы и главные процессы реализации механизма долговременной адаптации к гипоксии представлены на рис. 15–9.

Рис. 15–9. Механизмы долговременной адаптации организма к гипоксии.

Системы биологического окисления

Системы биологического окисления в тканях обеспечивают оптимальное энергетическое обеспечение функционирующих структур и уровень пластических процессов в них в условиях гипоксии. Это достигается благодаря увеличению:

† числа митохондрий и количества крист митохондрий,

† числа молекул ферментов тканевого дыхания в каждой митохондрии, а также активности ферментов, особенно — цитохромоксидазы,

† эффективности процессов биологического окисления и сопряжения его с фосфорилированием,

† эффективности механизмов анаэробного ресинтеза АТФ в клетках.

Система внешнего дыхания

Система внешнего дыхания обеспечивает уровень газообмена, достаточный для оптимального течения обмена веществ и пластических процессов в тканях. Это достигается благодаря:

† Гипертрофии лёгких и увеличению в связи с этим:

§ площади альвеол,

§ капилляров в межальвеолярных перегородках,

§ уровня кровотока в этих капиллярах.

† Увеличению диффузионной способности аэро‑гематического барьера лёгких.

† Повышению эффективности соотношения вентиляции альвеол и перфузии их кровью (вентиляционно‑перфузионного соотношения).

† Гипертрофии и возрастанию мощности дыхательной мускулатуры.

† Возрастанию жизненной ёмкости лёгких (ЖЁЛ).

Сердце

При долговременной адаптации к гипоксии увеличивается сила, а также скорость процессов сокращения и расслабления миокарда. В результате происходит возрастание объёма и скорости выбрасываемой в сосудистое русло крови — ударного и сердечного (минутного) выбросов. Эти эффекты становятся возможными благодаря:

† Умеренной сбалансированной гипертрофии всех структурных элементов сердца: миокарда, сосудистого русла, нервных волокон.

† Увеличению числа функционирующих капилляров в сердце.

† Уменьшению расстояния между стенкой капилляра и сарколеммой кардиомиоцита.

† Увеличению числа митохондрий в кардиомиоцитах и эффективности реакций биологического окисления. В связи с этим сердце расходует на 30–35% меньше кислорода и субстратов обмена веществ, чем в неадаптированном к гипоксии состоянии.

† Повышению эффективности трансмембранных процессов (транспорта ионов, субстратов и продуктов метаболизма, кислорода и др.).

† Возрастанию мощности и скорости взаимодействия актина и миозина в миофибриллах кардиомиоцитов.

† Повышению эффективности адрен‑ и холинергических систем регуляции сердца.

Сосудистая система

В адаптированном организме сосудистая система способна обеспечивать такой уровень перфузии тканей кровью, который необходим для осуществления их функции даже в условиях гипоксии. В основе этого лежат следующие механизмы:

† Увеличение количества функционирующих капилляров в тканях и органах.

† Снижение миогенного тонуса артериол и уменьшение реактивных свойств стенок резистивных сосудов к вазоконстрикторам: катехоламинам, АДГ, лейкотриенам, отдельным Пг и другим. Это создаёт условия для развития устойчивой артериальной гиперемии в функционирующих органах и тканях.

Система крови

При устойчивой адаптации организма к гипоксии существенно возрастают кислородная ёмкость крови, скорость диссоциации HbO2, сродство дезоксигемоглобина к кислороду в капиллярах лёгких.

Увеличение кислородной ёмкости крови является результатом стимуляции эритропоэза и развития эритроцитоза. Механизм эритроцитоза: Активация под влиянием ишемии и гипоксии образования в почках эритропоэтина. Эритропоэтин стимулирует эритропоэз.

Метаболизм

Метаболические процессы в тканях при достижении состояния устойчивой адаптированности к гипоксии характеризуются:

† Снижением их интенсивности.

† Экономным использованием кислорода и субстратов обмена веществ в реакциях биологического окисления и пластических процессах.

† Высокой эффективностью и лабильностью реакций анаэробного ресинтеза АТФ.

† Доминированием анаболических процессов в тканях по сравнению с катаболическими.

† Высокой мощностью и мобильностью механизмов трансмембранного переноса ионов. В значительной мере это является следствием повышения эффективности работы мембранных АТФаз, что обеспечивает регуляцию трансмембранного распределения ионов, миогенного тонуса артериол, водно‑солевого обмена и др. важных процессов.

Системы регуляции

Системы регуляции адаптированного к гипоксии организма обеспечивают достаточную эффективность, экономичность и надёжность управления его жизнедеятельностью. Это достигается благодаря включению механизмов нервной и гуморальной регуляции функций.

Нервная регуляция

Значительные изменения как в высших отделах мозга, так и в вегетативной нервной системе адаптированного к гипоксии организма характеризуются:

† Повышенной резистентностью нейронов к гипоксии и дефициту АТФ, а также некоторым другим факторам (например, токсинам, недостатку субстратов метаболизма).

† Гипертрофией нейронов и увеличением числа нервных окончаний в тканях и органах.

† Увеличенной чувствительностью рецепторных структур к нейромедиаторам. Последнее, как правило, сочетается с уменьшением синтеза и высвобождения нейромедиаторов.

Указанные, а также, по‑видимому, и другие изменения в нервной системе способствуют:

† Развитию мобильных и эффективно регулирующих функции органов влияний на них.

† Быстрой выработке и сохранению новых условных рефлексов.

† Переходу приобретённых навыков из кратковременных в долговременные.

† Устойчивости нервной системы к патогенным воздействиям.

Гуморальная регуляция

Перестройка функционирования эндокринной системы при гипоксии обусловливает:

† Меньшую степень стимуляции мозгового вещества надпочечников, гипоталамо‑гипофизарно‑надпочечниковой и других систем. Это ограничивает активацию механизмов стресс‑реакции и её возможные патогенные эффекты.

† Повышение чувствительности рецепторов клеток к гормонам, что способствует уменьшению объёма их синтеза в железах внутренней секреции.

В целом изменения в системах регуляции потенцируют как системные, так и органные приспособительные реакции организма, жизнедеятельность которого осуществляется в условиях гипоксии.