
- •1. Биосинтез гема. Основные этапы. Значение процесса. Возможные нарушения: порфирии и железодефицитные состояния.
- •2. Витамин е. Источники, биохимические функции. Признаки недостаточности у человека. Использование препаратов витамина е в медицинской практике.
- •3. При каких заболеваниях может одновременно развиться и жировая инфильтрация печени и кетоз? Каков механизм развития этих нарушений?
- •1. Взаимосвязь обменов белков, жиров и углеводов. Основные этапы катаболизма. Ключевые соединения трёх видов обмена и пути их использования.
- •2. Перекисное окисление липидов. Ход процесса. Механизмы запуска и контроля за перекисным окислением в организме.
- •1.Тканевое дыхание. Хар-ка митохондриальной системы оксидоредуктаз. Биологическое значение. Пути использования энергии разности электрохимического потенциала.
- •2.Виатмин в12. Источники, метаболизм. Биохимические функции. Причины и признаки недостаточности.
- •3.Больной жалуется на боли в суставах. При осмотре – суставы деформированы. В крови повышено количество мочевой кислоты. С чем это может быть связано?
- •1.Гормоны щитовидной железы. Особенности биосинтеза. Тироксин и трийодтиронин. Строение, метаболизм. Механизм действия на клетки-мишени. Влияние на обмен веществ.
- •2. Особенности обмена углеводов и аминокислот в нервной ткани.
- •3. У больного проведен анализ желудочного содержимого: общая кислотность – 30т.Ед. Анализ крови: гемоглобин 100г/л., АлТ – 0,05 м м/л/ч. С чем могут быть связаны обнаруженные изменения?
- •1. Транспортная функция белков плазмы крови.
- •1.Способы регуляции секреции гормонов: длинные и короткие петли регуляции, влияние метаболитов и нейромедиаторов на секрецию гормонов.
- •2.Витамин в1. Источники. Метаболизм. Биохимические функции. Нарушения обмена при недостаточности. Проявления.
- •3.У ребенка 2-х месяцев увеличена печень. Сахар крови 3,0 мм/л глюкозаоксидазным методом; в моче желчные пигменты, проба Ниландера положительная; белок отсутствует. Объясните происходящие изменения.
- •1.Окислительное декарбоксилирование пировиноградной кислоты. Характеристика мультиферментного комплекса пируватдегидрогеназы. Значение процесса.
- •2.Тироксин. Влияние на обмен веществ. Изменения обмена при гипо- и гипертиреозе.
- •3.Почему, если в крови повышены таг хиломикронов, рекомендуют сократить количество пищевых жиров, а если таг повышены за счет лпонп, то рекомендуют сократить потребление углеводов?
- •1.Биогенные амины. Пути их образования, примеры. Роль в организме, основные направления катаболизма.
- •2.Модифицированные липопротеиды. Понятие. Примеры. Виды модификации. Особые пути метаболизма модифицированных липопротеидов и их роль в атерогенезе.
- •1. Липолиз. Регуляция. Значение. В-окисление вжк. Энергетическая ценность процесса. Биохимические основы развития ожирения.
- •Регуляция
- •2.Белки системы комплемента. Интерфероны. Механизм действия. Биологическая роль.
- •Функции
- •Признаки гипервитаминоза
- •3.Анализ крови при инфаркте миокарда
- •1 Пути образования и обезвреживания аммиака.Особенности обезвреживания аммиака в печени и почках,головном мозге.
- •2 Глюкокортикоидные гормоны. Показания к использованию в клинической практике. Биохимические основы развития осложнений при длительном приеме синтетических гк
- •3 Почему липоевая кислота и витамин в1 обязательно входят в комплекс препаратов для лечения сердечной недостаточности?
- •1 Особенности обмена фенилаланина и тирозина.Причиныфенилкетонурии ,алкаптонурии,альбинизма.
- •2 Метаболиты железа.Источники ,потребность,условиявсасывания.Распределение в организме.Формы депонирования и транспорта.Биологическая роль железа.Роль витамина с в обмене железа.
- •II. Обмен железа
- •3. Назначьте бх обследование больному ,у которого вы подозреваете снижение экскреторной функции поджелудочной железы
Регуляция
На процесс липолиза оказывают стимулирующее воздействие гормоны глюкагонисоматотропин. Противоположное действие оказываетинсулин, который стимулируетфосфодиэстеразу, расщепляющую cAMP — молекулу вторичного посредника, что тормозит процесс липолиза.
β-Окисление жирных кислот - специфический путь катаболизма жирных кислот, протекающий в матриксе митохондрий только в аэробных условиях и заканчивающийся образованием ацетил-КоА. Водород из реакций β-окисления поступает в ЦПЭ, а ацетил-КоА окисляется в цитратном цикле, также поставляющем водород для ЦПЭ. Поэтому β-окисление жирных кислот - важнейший метаболический путь, обеспечивающий синтез АТФ в дыхательной цепи.
β-Окисление начинается с дегидрирования ацил-КоА FAD-зависимой ацил-КоАдегидрогеназой с образованием двойной связи между α- и β-атомами углерода в продукте реакции - еноил-КоА. Восстановленный в этой реакции кофермент FADH2 передаёт атомы водорода в ЦПЭ на кофермент Q. В результате синтезируются 2 молекулы АТФ (рис. 8-27). В следующей реакции р-окисления по месту двойной связи присоединяется молекула воды таким образом, что ОН-группа находится у β-углеродного атома ацила, образуя β-гидроксиацил-КоА. Затем β-гидроксиацил-КоА окисляется NАD+-зависимой дегидрогеназой. Восстановленный NADH, окисляясь в ЦПЭ, обеспечивает энергией синтез 3 молекул АТФ. Образовавшийся β-кетоацил-КоА подвергается тиолитическому расщеплению ферментом тиолазой, так как по месту разрыва связи С-С через атом серы присоединяется молекула кофермента А. В результате этой последовательности из 4 реакций от ацил-КоА отделяется двухуглеродный остаток - ацетил-КоА. Жирная кислота, укороченная на 2 атома углерода, опять проходит реакции дегидрирования, гидратации, дегидрирования, отщепления ацетил-КоА. Эту последовательность реакций обычно называют "циклом β-окисления", имея в виду, что одни и те же реакции повторяются с радикалом жирной кислоты до тех пор, пока вся кислота не превратится в ацетильные остатки.
Продуктами каждого цикла β-окисления являются FADH2, NADH и ацетил-КоА. Хотя реакции в каждом "цикле" одни и те же, остаток кислоты, который входит в каждый последующий цикл, короче на 2 углеродных атома. В последнем цикле окисляется жирная кислота из 4 атомов углерода, поэтому образуются 2 молекулы ацетил-КоА, а не 1, как в предыдущих. Суммарное уравнение β-окисления, например пальмитоил-КоА может быть представлено таким образом:
С15Н31СО-КоА + 7 FAD + 7 NAD+ + 7 HSKoA → 8 СН3-СО-КоА + 7 FADH2 + 7 (NADH + H+).
Жировая ткань составляет 20-25% от общей массы тела у женщин и 15-20% у мужчин. Однако избыточное накопление жира в адипоцитах ожирение) широко распространено. Среди взрослого населения некоторых стран около 50% людей страдает ожирением. Ожирение - важнейший фактор риска развития инфаркта миокарда, инсульта, сахарного диабета, артериальной гипертензии и желчнокаменной болезни.
Ожирением считают состояние, когда масса тела превышает 20% от "идеальной" для данного индивидуума. Образование адипоцитов происходит ещё во внутриутробном состоянии, начиная с последнего триместра беременности, и заканчивается в препубертатный период. После этого жировые клетки могут увеличиваться в размерах при ожирении или уменьшаться при похудании, но их количество не изменяется в течение жизни.