
10. Истечение и дросселирование газов и паров
10.1 Истечение газов. Основные понятия и математическое описание Адиабатное истечение из суживающегося сопла. Сопло Лаваля
В настоящее время исключительно большое развитие получили различного рода лопаточные машины (паровые и газовые турбины, турбокомпрессоры и турбодетандеры), а также реактивные двигатели и т.д. Работа всех этих агрегатов связана с движением рабочего тела по каналам переменного сечения. В соответствии с существующей технической терминологией каналы, в которых движется рабочее тело (газ или пар), носят название сопел и диффузоров. Сопло - это канал, в котором потенциальная энергия потока превращается в кинетическую, т.е. канал, в котором скорость потока растет. Диффузор - канал, обеспечивающий торможение потока газа (или пара), сжатие рабочего тела, т.е. канал, в котором скорость потока уменьшается.
При рассмотрении первого закона термодинамики было установлено уравнение первого закона для потока газа
,
(10.1)
где w - скорость движения рабочего тела.
В термодинамике принято считать течение рабочего тела по каналу адиабатным (dq = 0). Тогда уравнение (10.1) принимает вид dw2/2 = - dh, а поскольку dw2/2 = wdw, то получим
wdw = - dh. (10.2)
Для обратимого процесса истечения газа одновременно с уравнением (10.1) сохраняет силу уравнение (2.20) dq = dh - udp, которое при dq = 0 принимает вид
dh = udp. (10.3)
Тогда уравнение (10.2) с учетом (10.3) принимает вид
wdw - udp. (10.4)
Из уравнения (10.4) следует, что увеличение скорости движения сопровождается понижением давления газа и наоборот.
Уравнение (10.4) представим в следующем виде: разделим обе его части на w2, а числитель и знаменатель правой части умножим на произведение к × р, где к - показатель адиабаты:
.
(10.5)
Как известно из физики, местная скорость звука в газе , имеющем параметры p и u:
.
(10.6)
При исследовании течений газа принято скорость движения относить к местной скорости звука; это отношение называют числом Маха (Ма).
.
(10.7)
Если Ма < 1, то скорость истечения называют дозвуковой, если Ма > 1 - сверхзвуковой.
С учетом (10.6) и (10.7) уравнение (10.5) запишется так:
.
(10.8)
Уравнение (10.8) называют уравнением Вулиса.
Пусть через поперечное сечение канала площадью f проходит газ со скоростью w. Удельный объем в этом сечении u. При установившемся движении газа, когда не происходит разрыва струи, через каждое поперечное сечение канала в единицу времени протекает одинаковое массовое количество газа Y.
.
(10.9)
Отсюда
Y × u = f w. (10.10)
Продифференцировав выражение (10.10) при Y= const, получим
Ydu = fdw + wdf. (10.11)
Поделив (10.11) на выражение (10.10), получим уравнение сплошности
.
(10.12)
Прологарифмировав уравнение адиабаты puк = const, получим кlnu + lnp = const. Продифференцировав последнее выражение, получим кdu/u + dp/p= 0. Отсюда
.
(10.13)
Подставив (10.13) в уравнение (10.12) и умножив на - к, получим
.
(10.14)
Подставляя (10.14) в уравнение (10.8), получим
.
(10.15)
Знак разности (Ма2 - 1) зависит от того, движется ли газ с дозвуковой или сверхзвуковой скоростью. При Ма = 1 газ имеет скорость равную местной скорости звука (w = а). В этом случае (Ма2 - 1) = 0. При движении со скоростью меньше скорости звука Ма < 1 (w < a) и (Ма2-1) < 0. При сверхзвуковой скорости Ма > 1(w > a) и (Ма2-1) > 0.
Анализ уравнения (10.15) позволяет выяснить профиль канала в зависимости от начальной скорости газа и знака изменения скорости.
При Ма > 1 при ускоренном движении (dw > 0) знак разности (Ма2-1) > 0, следовательно, должно быть df > 0 (рис. 10.1), т.е. канал должен быть расширяющимся.
Пусть теперь ставится задача выяснить профиль диффузора, т.е. нужно создать замедленное движение (dw < 0). Если вначале газ движется со сверхзвуковой скоростью Ма > 1, то в правой части уравнения (10.15) получим отрицательный знак (Ма2 - 1) > 0 и dw < 0 и потому df < 0, т.е. сечение должно быть суживающимся (рис. 10.2). При Ма = 1 df = 0. В дозвуковой области при Ма < 1 (Ма2 - 1) < 0 получим df > 0, т.е. профиль канала должен быть расширяющимся (рис. 10.2).
Как видно, в обоих случаях при Ма = 1 df = 0 и поперечное сечение канала является минимальным. В нем скорость движения газа становится равной скорости звука и здесь происходит, как говорят, кризис течения газа, отсюда все величины, относящиеся к этому сечению: wкр, ркр, uкр , называются критическими.
Таким образом, как сопла, так и диффузоры могут быть суживающимися и расширяющимися. В каждом отдельном случае профиль сопла или диффузора определяется величиной числа Ма.
Интегрируя выражение (10.4) в пределах для w между w1 = 0 (ввиду малости w1 в сравнении с w2) и w2 = w и для давления между р1 и р2 получим
,
(10.16)
где l¢ - техническая работа при адиабатном расширении.
Подставив в (10.16) значение технической работы l¢ по уравнению (4.26), получим выражение для скорости истечения
.
(10.17)
Скорость истечения w можно найти также из выражения (10.2). Интегрируя это уравнение в пределах от w1 = 0 до w2 = w и от h1 до h2, получим
.
(10.18)
Из уравнения (10.18) можно заключить, что кинетическая энергия газа, вытекающего из сопла, определяется разностью энтальпий начального и конечного состояний газа при его обратимом адиабатном расширении. Из уравнения (10.18) имеем
,
(10.19)
где w в м/с, если h1 и h2 в Дж/кг.
Так как в таблицах энтальпия газа обычно приводится в кДж/кг, то формулу (10.19) записывают в виде
,
(10.20)
где h1 и h2 в кДж/кг, a w в м/с.
Массовый
расход газа через сопло найдем по
выражению (10.9), которое запишем в следующем
виде:
,
(10.21)
где f - площадь выходного сечения (устья) сопла; u2 - удельный объем газа в выходном сечении.
Из связи параметров в адиабатном процессе имеем
или
.
(10.22)
Подставляя (10.17) и (10.22) в уравнение (10.21) получим
.
(10.23)
Обозначая b = р2/р1 и подставляя b в (10.17) и (10.23), запишем выражения для скорости и массового расхода
.
(10.24)
.
(10.25)
Критическая скорость и максимальный расход газа. Рассмотрим, как изменяется расход Y газа через сопло, если начальное давление р1 остается постоянным, а давление среды р2 принимает различные значения. Построим диаграмму этого изменения в координатах Y - b (рис. 10.4). Пусть р2 = р1, т.е. b = 1, тогда из уравнения (10.25) следует, что Y = 0. Т.е. в том случае, когда давление в среде, куда должно происходить истечение, равно давлению входа в сопло, никакого истечения не происходит, что вполне понятно. Допустим р2 = 0, т.е. b = 0, тогда из (10.25) следует, что Y = 0. Т.е. получается, что при истечении в среду, где имеется полный вакуум, расход газа будет равен нулю. Что совсем непонятно.
Опыт показывает, что расход газа в правой половине диаграммы совпадает с получаемым по уравнению (10.25), т.е. поднимаемся по кривой 1-2, при дальнейшем понижении р2 (а следовательно, и b) расход газа остается постоянным и максимальным, т.е. идет по линии 2-3. Максимальному расходу соответствует в устье сопла критическое давление, при котором скорость истечения w = а (Ма = 1). При этом ркр/р1 = bкр.
Характер реальной кривой расхода 1-2-3 (рис.10.4) объясняется следующим. При давлении среды р2 > ркр давление в устье сопла руст = р2. Когда давление среды р2 понизится до ркр, давление в устье руст = ркр. При дальнейшем понижении давления среды р2 < ркр давление в устье сопла остается постоянным, равным руст = ркр. Формулу (10.25) можно считать правильной и для левой половины рис. 10.4, если понимать в ней под р2 не давление окружающей среды, а давление в устье сопла. Невозможность, начиная с определенного момента, дальнейшего понижения давления в устье суживающегося сопла объясняется характером распространения изменения давления в газовой среде. Всякое изменение давления, произведенное в какой-либо точке неподвижной газовой среды, распространяется со скоростью звука в данной среде.
Рассмотрим с этой точки зрения явление истечения газа. Так как распространение изменения давления происходит в движущейся среде, т.е. в вытекающей из сопла струе газа, надо различать абсолютную скорость распространения волны пониженного давления и относительную скорость. Если в среде, куда происходит истечение газа, понизить давление до некоторого значения р2, то волна пониженного давления в вытекающей струе будет распространяться с абсолютной скоростью, равной скорости звука а. Относительная скорость волны пониженного давления, относительно неподвижного сопла, будет равна разности скоростей звука и движения струи: а - w (рис.10.5). При уменьшении р2 и b эта разность будет становиться все меньше, т.к. w будет увеличиваться. Наконец наступит момент, когда а - w = 0. В этом случае в устье сопла установится скорость w = wкр = а. А давление р2 в этом случае будет равно ркр, которое устанавливается в устье сопла.
Найдем максимальный расход Ymax и соответствующую ему критическую скорость wкр. Значение bкр, при котором устанавливается максимальный секундный расход и критическая скорость (в соответствии с правилами отыскания экстремума), может быть получено, если взять в формуле (10.25) первую роизводную от выражения в скобках и приравнять ее нулю,
то
есть.
Продифференцировав,
получим
.
Поделив последнее выражение на b(2-к)/к
и производя некоторые преобразования,
получим
.
(10.26)
Из выражения (10.26) видно, что bкр целиком определяется значением показателя адиабаты к , т.е. физическими свойствами вытекающего газа. Так, при к = 1,4 bкр = 0,528.
Подставив в выражения (10.24) и (10.25) значение bкр по (10.26), получим формулы для определения wкр и Ymax.
;
(10.27)
.
(10.28)
Для скорости wкр можно также записать, согласно уравнению (10.20):
.
(10.29)
Таким образом, при истечении газа из суживающегося сопла следует различать три случая:
1) 1 > b > bкр. В этом случае скорость истечения и расход зависят от отношения р2/р1 и определяются по формулам (10.17) и (10.23). Здесь весь перепад давления от р1 до р2 используется на увеличение кинетической энергии газа;
2) b = bкр. В этих условиях секундный расход достигает максимального значения. Давление р2 = ркр, а скорость w = wкр. Скорость и расход определяются по формулам (10.27) и (10.28);
3) bкр > b > 0. В этом случае, Y достигнув своего максимального значения при b = bкр, дальше не увеличивается, скорость также остается постоянной, равной wкр. Yи w здесь, как и в предыдущем случае, определяются по формулам (10.28) и (10.27), то есть в этом случае для увеличения кинетической энергии газа используется не весь перепад давлений - от р1 до р2, а только часть его - от р1 до ркр.
(10.30)
С другой стороны, расход может быть подсчитан по формуле (10.28), где f = fmin,
т.е..
(10.31)
Несмотря на то, что w > wкр, расход газа остается постоянным, равным Ymax.
Обычно расчет сопла Лаваля проводится по заданному расходу газа Y и параметрам р1 и u1 на входе, задается также давление среды р2. Тогда из формул (10.30) и (10.31) можно подсчитать
;
(10.32)
и
.
(10.33)
Если взять отношение fвых/fmin, то получим
.
(10.34)
Задаваясь различными значениями давления р2 по формуле (10.34), можно вычислить соответствующую этому давлению площадь поперечного сечения сопла, то есть эта формула позволяет решить вопрос о профилировании сопла. Если допустить, что расширяющаяся часть сопла Лаваля выполнена с прямолинейными образующими и углом конусности a, то длина этой части сопла (рис. 10.7) найдется по формуле
.