
Термодинамика пособие(копия) / Термодинамика пособие(копия) / УЧПОС11
.DOC11. Сжатие газов. Компрессоры.
11.1. Одноступенчатый компрессор объемного действия
Компрессором называют машину, предназначенную для сжатия и перемещения различных газов. В современной технике компрессоры получили очень широкое применение. Их используют в химической, машиностроительной, металлургической, горнорудной промышленности, в авиации, на железнодорожном и водном транспорте, в газотурбинных установках, холодильных установках и т.д.
По конструкционным признакам компрессоры подразделяют на две группы: объемные и лопаточные. В свою очередь объемные компрессоры делятся на поршневые и ротационные, а лопаточные - на центробежные и осевые (или аксиальные).
Несмотря на различие принципов сжатия газа в компрессорах и их конструктивные отличия, термодинамические принципы их работы аналогичны и процессы сжатия в различных компрессорах описываются одними и теми же уравнениями. Поэтому для исследования и анализа процессов, протекающих в компрессоре, рассмотрим работу наиболее простого и распространенного одноступенчатого поршневого компрессора.
Рассмотрим теоретический или идеальный процесс компрессора при следующих допущениях: 1) геометрический объем цилиндра компрессора равен рабочему объему (отсутствует вредное пространство); 2) отсутствуют потери на трение поршня и дросселирование в клапанах; 3) всасывание и нагнетание осуществляется при постоянных давлениях.
Следует отметить, что линия всасывания (4-1) и линия нагнетания (2-3) не являются термодинамическими процессами, поскольку они протекают при переменном количестве газа. Поэтому индикаторная диаграмма 1-2-3-4 может быть лишь условно названа циклом. Предполагается, что перед началом следующего цикла давление мгновенно падает от р2 до р1.
Задачей термодинамического анализа компрессора является определение работы, которую необходимо затратить для получения определенного количества (например, 1 кг) сжатого газа при заданных начальных и конечных его параметрах. Теоретическая работа, затрачиваемая на получение 1 кг сжатого газа, в компрессоре:
lк = lсж + l наг - lвс, (11.1)
где
= пл. 12 nm - работа сжатия;
lнаг = p2u2 = пл. n 23 0n - работа нагнетания;
lвс = p1u1 = пл. 041 m0 - работа всасывания.
Работа lк, определяемая уравнением (11.1), называется технической работой компрессора. Работы lк, lсж и lнаг будут отрицательными, т.к. они совершаются над газом, а работа lвс - положительна, т.к. в этом случае поступающий газ совершает работу. Если просуммировать площади, соответствующие работам lсж и lнаг (рис. 11.2) и вычесть площадь, соответствующую lвс, то получим lк = пл. 12341. Но по определению эта работа есть техническая работа процесса сжатия, следовательно:
.
(11.2)
Процесс сжатия газа в компрессоре в зависимости от условий теплообмена может осуществляться по изотерме 1-2¢, адиабате 1-2² и политропе 1-2 (рис. 11.2). При сжатии по каждой из кривых затрачивается различная работа. Наименьшая работа затрачивается при сжатии по изотерме 1-2¢, наибольшая - при сжатии по адиабате 1-2².
Следовательно, наиболее выгодно осуществлять работу сжатия по изотерме. Однако практически изотермическое сжатие осуществить невозможно и кривая сжатия располагается между изотермой и адиабатой, т.е. сжатие осуществляется по политропе с показателем политропы для двухатомных газов n = 1,2 - 1,25. Чем интенсивнее будет охлаждение газа, тем ближе будет политропа к изотерме, т.е. тем меньше будет n.
Найдем работу lк, затрачиваемую на привод компрессора при различных процессах сжатия. В соответствии с уравнением (11.2), воспользовавшись уравнениями (4.12), (4.26) и (4.32), можно записать следующее.
При изотермическом сжатии
.
(11.3)
Количество отводимой теплоты равно затраченной работе
.
(11.4)
При адиабатном сжатии
.
(11.5)
Другая формула работы компрессора при адиабатном сжатии, удобная для расчета с помощью диаграмм, может быть получена из уравнения первого закона термодинамики dq = dh - udp. В адиабатном процессе dq = 0 и dh = udp. Проинтегрировав последнее выражение в пределах от р1 до р2 и учитывая (11.2), получим
lкад = h1 - h2 = -(h2 - h1). (11.6)
При политропном сжатии
.
(11.7)
Согласно (4.34) количество отводимой теплоты:
.
(11.8)
По окончании нагнетания сжатого газа (линия 2-3) некоторое его количество остается во вредном пространстве и занимает объем V0. При обратном ходе поршня оставшийся во вредном пространстве газ расширяется и всасывание новой порции газа начинается только тогда, когда давление газа в цилиндре упадет до давления всасывания р1. Процесс расширения газа, оставшегося во вредном пространстве, 3-4. Всасывание начинается в точке 4. Следовательно, в цилиндр из-за наличия вредного пространства поступит не Vh газа, а V (см. рис. 11.4). Вредное пространство уменьшает количество засасываемого газа и тем самым уменьшает производительность компрессора.
Отношение hоб = V/Vh- объемный к.п.д. компрессора. Объемный к.п.д. уменьшается с увеличением вредного пространства и при определенном V0 может стать равным нулю.
При неизменном V0 с повышением давления сжатия объемный к.п.д. и производительность компрессора также уменьшаются (рис. 11.5) и в пределе, когда линия сжатия будет пересекать линию вредного пространства (точка 2²),
Массовое количество газа, поступающего в цилиндр компрессора при всасывании, уменьшается также еще за счет нагревания его горячими поверхностями цилиндра и нагретым газом, оставшимся во вредном пространстве. Это уменьшение характеризуется отношением T1¢/T1, где Т1 - температура газа, нагретого в цилиндре в процессе всасывания; T1¢- температура всасываемого газа. Общее уменьшение производительности компрессора из-за наличия вредного пространства и нагревания газа характеризуется коэффициентом наполнения hнап = hоб × Т1¢/Т1.
Уменьшение производительности компрессора с увеличением давления сжатого газа не позволяет получать газы высокого давления в одном цилиндре. Кроме того, при высоких давлениях сжатия температура газа может превысить температуру самовоспламенения смазочного масла в цилиндре, что недопустимо. Обычно одноступенчатые компрессоры применяются лишь в том случае, когда отношение р2/р1 £ 4 - 5. При необходимости получить большее повышение давления применяют многоступенчатое сжатие.
11.2. Многоступенчатый компрессор
Сущность многоступенчатого сжатия может быть показана на примере двухступенчатой установки, схема которой представлена на рис. 11.6. Здесь сжатие газа осуществляется в двух последовательно соединенных цилиндрах с промежуточным охлаждением газа между цилиндрами в охладителе газа. Применение сжатия газа в нескольких цилиндрах понижает отношение давлений в каждом из них, повышает объемный к.п.д. каждой ступени, улучшает условия смазки поршня в цилиндре и уменьшает расход энергии на привод компрессора, приближая рабочий процесс в компрессоре к наиболее выгодному изотермическому сжатию. Приведем идеальную индикаторную диаграмму двухступенчатого компрессора (рис. 11.7).
На диаграмме: 0-1 - всасывание в 1-ю ступень; 1-2 - политропное сжатие в 1-й ступени; 2-а - нагнетание из 1-й ступени в охладитель; а-3 - всасывание во 2-ю ступень; 3-4 - политропное сжатие во 2-й ступени; 4-в - нагнетание из2-й ступени в резервуар.
Отрезок 2-3 изображает уменьшение объема газа в процессе охлаждения в охладителе при р2 = const. Охлаждение рабочего тела в охладителе производится до начальной температуры, т.е. Т3 = Т1 и точки 1 и 3 лежат на изотерме 1-5. Отношение давлений во всех ступенях принимается одинаковым: р2/p1 = p4/p3 = z.
или при m ступеней получаем
.
Вся работа на привод двухступенчатого
компрессора при политропном сжатии
определяется площадью 01234в0.
Если процесс сжатия газа осуществлять
до давления р4
в одной ступени, то работа на привод
компрессора будет равна площади 016в0.
При переходе от одноступенчатого сжатия
к двухступенчатому с промежуточным
охлаждением получается экономия работы,
изображаемая площадью 23462.
При равенстве температур газа на входе в каждую ступень и равенстве отношений давлений во всех цилиндрах получаем равенство затраченных работ во всех ступенях компрессора.
Работа в 1-й ступени
.
Работа во 2-й ступени
.
Откуда l1 = l2 = l. Полная работа, расходуемая на сжатие 1 кг газа в двух ступенях компрессора, lк = 2l. При производительности компрессора М газа получим Lк = 2Ml. Следовательно, Lк представляет собой теоретическую мощность, затрачиваемую на привод компрессора, которую в общем случае можно записать как
N0 = M × l × m,
где m - число ступеней компрессора; l, - работа одной ступени, Дж/кг; М - производительность компрессора, кг/с.
Для определения действительной (эффективной) мощности Nе необходимо учесть механический к.п.д. компрессора hм.
,
где М - действительная производительность компрессора. Если же задана теоретическая производительность Мт, то
.
Совершенство работы охлаждаемых компрессоров, у которых 1< n < к, принято характеризовать внутренним изотермическим к.п.д. hиз = lиз/lдейст., т.е. отношением энергии, потребляемой идеальным компрессором, при изотермическом сжатии (n = 1) к энергии, потребляемой компрессором в действительности при политропном сжатии. Совершенство работы неохлаждаемых компрессоров (n > к) характеризуют внутренним адиабатным к.п.д.: hад = lад/lдейст. Под lдейст. здесь следует понимать работу при политропном сжатии, когда политропа в координатах p, u идет круче, чем адиабата.