
- •А.В. Федотов теория автоматического управления
- •Список сокращений
- •Основы теории автоматического управления Введение
- •Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- •Система регулирования скорости вращения двигателей
- •Автоматизированный электропривод
- •Система терморегулирования
- •Следящая система автоматического управления
- •Система автоматического регулирования уровня
- •Обобщённая структура автоматической системы
- •Принципы автоматического управления
- •Математическая модель автоматической системы
- •Пространство состояний системы автоматического управления
- •Классификация систем автоматического управления
- •Структурный метод описания сау
- •Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- •Линеаризация дифференциального уравнения системы
- •Форма записи линеаризованных дифференциальных уравнений
- •Преобразование Лапласа
- •Свойства преобразования Лапласа
- •Пример исследования функционального элемента
- •Передаточная функция
- •Типовые воздействия
- •Временные характеристики системы автоматического управления
- •Частотная передаточная функция системы автоматического управления
- •Частотные характеристики системы автоматического управления
- •Типовые звенья
- •5. Дифференцирующее звено.
- •Неустойчивые звенья
- •Соединения структурных звеньев
- •Преобразования структурных схем
- •Передаточная функция замкнутой системы автоматического управления
- •Передаточная функция замкнутой системы по ошибке
- •Построение частотных характеристик системы
- •Устойчивость систем автоматического управления Понятие устойчивости
- •Условия устойчивости системы автоматического управления
- •Теоремы Ляпунова об устойчивости линейной системы
- •Критерии устойчивости системы Общие сведения
- •Критерий устойчивости Гурвица
- •Критерий устойчивости Найквиста
- •Применение критерия к логарифмическим характеристикам
- •Критерий устойчивости Михайлова
- •Построение области устойчивости системы методом d-разбиения
- •Структурная устойчивость систем
- •Качество системы автоматического управления Показатели качества
- •Точность системы автоматического управления Статическая ошибка системы
- •Вынужденная ошибка системы
- •Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- •Решение уравнения системы операционными методами
- •Численное решение дифференциального уравнения
- •Моделирование переходной характеристики
- •Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- •Интегральные оценки качества процесса
- •Оценка качества по частотным характеристикам Основы метода
- •Оценка качества системы по частотной характеристике
- •Оценка колебательности системы
- •Построение вещественной частотной характеристики
- •Оценка качества сау по логарифмическим характеристикам
- •Синтез системы автоматического управления Постановка задачи синтеза системы
- •Параметрический синтез системы
- •Структурный синтез системы Способы коррекции системы
- •Построение желаемой логарифмической характеристики системы
- •Синтез последовательного корректирующего звена
- •Синтез параллельного корректирующего звена
- •Другие методы синтеза систем автоматического управления
- •Реализация систем автоматического управления Промышленные регуляторы
- •Особенности реализации промышленных регуляторов
- •Настройка промышленных регуляторов
- •Управление по возмущению
- •Комбинированное управление
- •Многосвязные системы регулирования
- •Обеспечение автономности управления
- •Библиографический список
- •Предметный указатель
Интегральные оценки качества процесса
Интегральные оценки качества характеризует суммарное отклонение реального переходного процесса в системе от идеализированного переходного процесса. В качестве идеализированного процесса обычно принимается ступенчатый (скачкообразный) переходный процесс или экспоненциальный процесс с заданными параметрами экспоненты.
На рис. 103 показан пример колебательного переходного процесса в системе при подаче на вход ступенчатого сигнала. Для системы с идеальными динамическими свойствами выходной сигнал также должен измениться мгновенно и принять новое значение yуст. Ступенчатый переходный процесс с изменением выходной величины от исходного (нулевого) значения до значенияyуст можно рассматривать как идеальный процесс, к которому должна стремиться реальная переходная характеристика системы при улучшении качества последней. Отклонение реального процесса от идеального можно рассматривать как меру качества системы автоматического управления.
Отклонение реального процесса в системе от идеального можно описать функцией отклонения (не путать с ошибкой системы)
.
Если построить график изменения во времени этого отклонения (рис. 104), то этот график будет отражать качество процесса в системе. Так, на рис. 104 процесс, показанный пунктиром, лучше процесса, показанного сплошной линией, поскольку новое состояние системы устанавливается быстрее и интегральное отклонение процесса в системе от идеализированного ступенчатого процесса меньше.
Для численной характеристики качества процесса в системе можно принять площадь, заключённую под кривой зависимости x(t). Чем меньше эта площадь, тем выше качество процесса в системе.
Описанный подход порождает первую интегральную оценкукачества системы автоматического управления
.
Для вычисления
интегральной оценки
нет необходимости в решении дифференциального
уравнения, описывающего систему, и в
нахождении функции
.
Рассмотрим более простой способ
вычисления первой интегральной оценки
качества системы:
.
Изображение
можно найти с использованием передаточной
функции системы
и
где
Передаточная функция замкнутой системы
,
при
этом
.
Следовательно,
тогда
.
Полученная
формула позволяет вычислить первую
интегральную оценку по последним
коэффициентам полиномов передаточной
функции замкнутой системы. Чем меньше
интегральная оценка, тем ближе реальная
переходная характеристика системы к
идеальной переходной характеристике
(тем выше качество системы).
Первая интегральная оценка даёт адекватный результат только в случае апериодического переходного процесса в системе. В случае колебательного переходного процесса эта оценка даст заниженный результат, поскольку площадь под кривой x(t)будет содержать как положительные, так и отрицательные компоненты (рис. 105), что приведёт к занижению оценки. Для устранения указанного несоответствия наряду с первой интегральной оценкой используется ивторая интегральная оценка
.
Вычисляется вторая интегральная оценка через коэффициенты дифференциального уравнения процесса в системе или через коэффициенты полиномов в числителе и знаменателе передаточной функции замкнутой системы (что одно и то же). Пусть уравнение системы
,
где
выходной параметр системы,
входное воздействие.
Тогда вторая интегральная оценка может быть вычислена по следующим зависимостям:
,
где
.
Определители ∆кполучаются из матрицы ∆ заменой столбца с номером
столбцом вида
,
при этом
.
Коэффициенты Biопределяются по следующим формулам:
Приведенные
выше формулы для вычисления второй
интегральной оценки
применимы, если выполняется условие
.
В ряде случаев в качестве идеализированного процесса целесообразно принимать экспоненциальный процесс, а при вычислении интегральной оценки учитывать и скорость изменения ошибки. В этих случаях применяется третья интегральная оценкакачества вида
,
где τ – показатель образцовой экспоненты
Интегральные оценки применяются для заведомо устойчивых систем не выше 5 порядка. Интегральные оценки не являются абсолютной характеристикой качества системы, а применяются для сравнения систем и разных вариантов системы, т.е. для сравнительной оценки систем автоматического управления. Чем меньше величина интегральной оценки, тем выше качество системы.
Поскольку
свойства системы заранее могут быть
неизвестными, то обычно вычисляются и
первая, и вторая оценки одновременно.
Для ограничения колебательности системы
следует ограничивать соотношение этих
оценок
из следующих соображений: для систем
второго порядка λ=0,8…0,9; для систем
третьего порядка λ=0,7…0,8; для систем
четвертого порядка λ=0,6…0,7.