- •А.В. Федотов теория автоматического управления
- •Список сокращений
- •Основы теории автоматического управления Введение
- •Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- •Система регулирования скорости вращения двигателей
- •Автоматизированный электропривод
- •Система терморегулирования
- •Следящая система автоматического управления
- •Система автоматического регулирования уровня
- •Обобщённая структура автоматической системы
- •Принципы автоматического управления
- •Математическая модель автоматической системы
- •Пространство состояний системы автоматического управления
- •Классификация систем автоматического управления
- •Структурный метод описания сау
- •Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- •Линеаризация дифференциального уравнения системы
- •Форма записи линеаризованных дифференциальных уравнений
- •Преобразование Лапласа
- •Свойства преобразования Лапласа
- •Пример исследования функционального элемента
- •Передаточная функция
- •Типовые воздействия
- •Временные характеристики системы автоматического управления
- •Частотная передаточная функция системы автоматического управления
- •Частотные характеристики системы автоматического управления
- •Типовые звенья
- •5. Дифференцирующее звено.
- •Неустойчивые звенья
- •Соединения структурных звеньев
- •Преобразования структурных схем
- •Передаточная функция замкнутой системы автоматического управления
- •Передаточная функция замкнутой системы по ошибке
- •Построение частотных характеристик системы
- •Устойчивость систем автоматического управления Понятие устойчивости
- •Условия устойчивости системы автоматического управления
- •Теоремы Ляпунова об устойчивости линейной системы
- •Критерии устойчивости системы Общие сведения
- •Критерий устойчивости Гурвица
- •Критерий устойчивости Найквиста
- •Применение критерия к логарифмическим характеристикам
- •Критерий устойчивости Михайлова
- •Построение области устойчивости системы методом d-разбиения
- •Структурная устойчивость систем
- •Качество системы автоматического управления Показатели качества
- •Точность системы автоматического управления Статическая ошибка системы
- •Вынужденная ошибка системы
- •Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- •Решение уравнения системы операционными методами
- •Численное решение дифференциального уравнения
- •Моделирование переходной характеристики
- •Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- •Интегральные оценки качества процесса
- •Оценка качества по частотным характеристикам Основы метода
- •Оценка качества системы по частотной характеристике
- •Оценка колебательности системы
- •Построение вещественной частотной характеристики
- •Оценка качества сау по логарифмическим характеристикам
- •Синтез системы автоматического управления Постановка задачи синтеза системы
- •Параметрический синтез системы
- •Структурный синтез системы Способы коррекции системы
- •Построение желаемой логарифмической характеристики системы
- •Синтез последовательного корректирующего звена
- •Синтез параллельного корректирующего звена
- •Другие методы синтеза систем автоматического управления
- •Реализация систем автоматического управления Промышленные регуляторы
- •Особенности реализации промышленных регуляторов
- •Настройка промышленных регуляторов
- •Управление по возмущению
- •Комбинированное управление
- •Многосвязные системы регулирования
- •Обеспечение автономности управления
- •Библиографический список
- •Предметный указатель
Теоремы Ляпунова об устойчивости линейной системы
Полученное выше условие устойчивости справедливо для обыкновенных линейных систем автоматического управления. На практике приходится иметь дело с линеаризованными системами, и фактическая нелинейность характеристик системы может привести к неверным выводам о её устойчивости на основании исследования линеаризованного дифференциального уравнения.
Границы применимости линеаризованных дифференциальных уравнений при исследовании устойчивости систем определяются общими теоремами устойчивости А.М. Ляпунова. Эти теоремы приводятся ниже без доказательств (с доказательством теорем можно ознакомиться в учебниках по теории управления или в трудах А.М. Ляпунова).
1. Реальная система устойчива «в малом», если характеристическое уравнение линеаризованной системы имеет все корни с отрицательными вещественными частями.
2. Если характеристическое уравнение линеаризованной системы имеет хотя бы один корень с положительной вещественной частью, то реальная система будет неустойчива.
3. При наличии корней характеристического уравнения с нулевой вещественной частью поведение реальной системы может не совпадать с поведением линеаризованной системы, и решение вопроса об устойчивости системы требует дополнительных исследований.
Понятие "в малом" соответствует поведению системы при небольших начальных возмущениях, когда нелинейные зависимости между сигналами в системе не оказывают существенного влияния на её поведение.
Критерии устойчивости системы Общие сведения
Признаки, по которым можно судить об устойчивости системы автоматического управления без нахождения корней характеристического уравнения, в совокупности с правилами применения этих признаков, называются критериями устойчивости системы автоматического управления. Поскольку устойчивость системы определяется знаком вещественной части корней характеристического уравнения системы, то критерии устойчивости позволяют определить этот знак без нахождения самих корней.
Применение критериев устойчивости упрощает задачу исследования устойчивости системы, а также позволяет выявить причину её неустойчивости и наметить пути для устранения неустойчивости системы (для приведения системы к устойчивости).
Все критерии устойчивости делятся на алгебраические критерии, основанные на исследовании коэффициентов характеристического уравнения, ичастотные критерии, основанные на исследовании амплитудно-фазовых частотных характеристик системы.
В настоящее время известны алгебраические критерии А.И. Вышнеградского, Рауса и Гурвица. Критерий Вышнеградского и так называемая диаграмма Вышнеградского справедливы для систем регулирования, описываемых линейным дифференциальным уравнением третьего порядка. Критерий Рауса представляет собой алгоритм исследования коэффициентов характеристического уравнения. Наиболее распространен и удобен алгебраический критерий Гурвица. Критерии Рауса и Гурвица применимы для дифференциальных уравнений любого порядка.
Из частотных критериев получили распространение критерии А.В. Михайлова и Найквиста.
Критерий устойчивости Гурвица
Критерий Гурвица использует для оценки выполнения условия устойчивости системы коэффициенты характеристического уравнения замкнутой системы. Следовательно, для применения критерия Гурвица необходим характеристический полином замкнутой системы
.
Первым условием устойчивости системы автоматического управления по Гурвицу является положительность всех коэффициентов ciхарактеристического уравнения. Если это условие не соблюдается, то система неустойчива. Для заключения об устойчивости системы условия положительности коэффициентов недостаточно.
Вторым условием устойчивости системы по Гурвицу является положительность всех определителей, составленных из коэффициентов характеристического полинома на основе таблицы Гурвица. Для уравненияn-порядка таблица Гурвица имеет следующий вид:
C1 |
C3 |
C5 |
C7 |
C9 |
|
0 |
0 |
C0 |
C2 |
C4 |
C6 |
C8 |
|
0 |
0 |
0 |
C1 |
C3 |
C5 |
C7 |
|
0 |
0 |
0 |
C0 |
C2 |
C4 |
C6 |
|
0 |
0 |
0 |
0 |
C1 |
C3 |
C5 |
|
0 |
0 |
0 |
… |
… |
… |
… |
…. |
0 |
0 |
0 |
… |
… |
… |
… |
…. |
Cn |
0 |
0 |
|
|
|
|
…. |
Cn-1 |
0 |
0 |
0 |
0 |
0 |
0 |
…. |
Cn-2 |
Cn |
При составлении таблицы по ее главной диагонали выписываются все коэффициенты характеристического уравнения, начиная с c1поcn. Затем каждый столбец таблицы, начиная с главной диагонали, дополняется коэффициентами: вверхс возрастающим номером, внизс убывающим номером. Вместо отсутствующих коэффициентов ставятся нули. В результате получается таблица (матрица), содержащая нули и коэффициенты характеристического полинома замкнутой системы.
На основе таблицы составляются определители
;…
Критерий Гурвица сводится к требованию положительности всех n определителей, составленных на основе таблицы, т.е. должно быть
,,….
Условием нахождения системы на границе устойчивости является равенство нулю последнего определителя
или
определяет границу устойчивости апериодического типа,границу устойчивости колебательного типа.
Например, для системы третьего порядка характеристический полином
Таблица Гурвица для этого случая будет иметь следующий вид:
Для устойчивости системы необходимо выполнение требований;;;, а также
При исследовании устойчивости по Гурвицу достаточно рассмотреть знак главных определителей, которые определяют знак всех остальных (зависимых) определителей. В литературе по теории управления на основе раскрытия определителей приводятся конечные условия устойчивости для систем разного порядка.
Используя критерий Гурвица, можно исследовать влияние того или иного параметра на устойчивость системы и определить допустимые границы изменения этого параметра. При исследовании находят зависимость для определителей от влияющего параметра x: , и затем строят графики функций этих зависимостей (рис. 80).
По графикам можно видеть, что условие устойчивости соблюдается только при изменении влияющего параметра xв пределах отХminдоХmax, поскольку только в этих границах все определители остаются положительными одновременно. Следовательно, по графику необходимо определить область изменения влияющего параметра, в которой все определители положительны одновременно. Изменение влияющего параметра в установленных таким образом пределах не приводит к потере системой устойчивости. Подобное исследование может потребоваться при необходимости ответа на вопрос о возможности замены того или иного элемента системы (например, при ремонте) без потери системой работоспособности.
Алгебраический критерий Гурвица удобно применять для исследования замкнутых систем автоматического регулирования, для которых известна передаточная функция замкнутой системы и, следовательно, известен характеристический полином замкнутой системы. При практическом применении критерия нет необходимости каждый раз составлять таблицу Гурвица и определители на её основе. Достаточно вычислить главные определители, выражения для которых применительно к системам разного порядка приводятся в учебной и справочной литературе по теории автоматического управления.