
- •А.В. Федотов теория автоматического управления
- •Список сокращений
- •Основы теории автоматического управления Введение
- •Примеры систем автоматического управления Классический регулятор Уатта для паровой машины
- •Система регулирования скорости вращения двигателей
- •Автоматизированный электропривод
- •Система терморегулирования
- •Следящая система автоматического управления
- •Система автоматического регулирования уровня
- •Обобщённая структура автоматической системы
- •Принципы автоматического управления
- •Математическая модель автоматической системы
- •Пространство состояний системы автоматического управления
- •Классификация систем автоматического управления
- •Структурный метод описания сау
- •Обыкновенные линейные системы автоматического управления Понятие обыкновенной линейной системы
- •Линеаризация дифференциального уравнения системы
- •Форма записи линеаризованных дифференциальных уравнений
- •Преобразование Лапласа
- •Свойства преобразования Лапласа
- •Пример исследования функционального элемента
- •Передаточная функция
- •Типовые воздействия
- •Временные характеристики системы автоматического управления
- •Частотная передаточная функция системы автоматического управления
- •Частотные характеристики системы автоматического управления
- •Типовые звенья
- •5. Дифференцирующее звено.
- •Неустойчивые звенья
- •Соединения структурных звеньев
- •Преобразования структурных схем
- •Передаточная функция замкнутой системы автоматического управления
- •Передаточная функция замкнутой системы по ошибке
- •Построение частотных характеристик системы
- •Устойчивость систем автоматического управления Понятие устойчивости
- •Условия устойчивости системы автоматического управления
- •Теоремы Ляпунова об устойчивости линейной системы
- •Критерии устойчивости системы Общие сведения
- •Критерий устойчивости Гурвица
- •Критерий устойчивости Найквиста
- •Применение критерия к логарифмическим характеристикам
- •Критерий устойчивости Михайлова
- •Построение области устойчивости системы методом d-разбиения
- •Структурная устойчивость систем
- •Качество системы автоматического управления Показатели качества
- •Точность системы автоматического управления Статическая ошибка системы
- •Вынужденная ошибка системы
- •Прямые методы анализа качества системы Аналитическое решение дифференциального уравнения
- •Решение уравнения системы операционными методами
- •Численное решение дифференциального уравнения
- •Моделирование переходной характеристики
- •Косвенные методы анализа качества Оценка качества по распределению корней характеристического полинома системы
- •Интегральные оценки качества процесса
- •Оценка качества по частотным характеристикам Основы метода
- •Оценка качества системы по частотной характеристике
- •Оценка колебательности системы
- •Построение вещественной частотной характеристики
- •Оценка качества сау по логарифмическим характеристикам
- •Синтез системы автоматического управления Постановка задачи синтеза системы
- •Параметрический синтез системы
- •Структурный синтез системы Способы коррекции системы
- •Построение желаемой логарифмической характеристики системы
- •Синтез последовательного корректирующего звена
- •Синтез параллельного корректирующего звена
- •Другие методы синтеза систем автоматического управления
- •Реализация систем автоматического управления Промышленные регуляторы
- •Особенности реализации промышленных регуляторов
- •Настройка промышленных регуляторов
- •Управление по возмущению
- •Комбинированное управление
- •Многосвязные системы регулирования
- •Обеспечение автономности управления
- •Библиографический список
- •Предметный указатель
Устойчивость систем автоматического управления Понятие устойчивости
Под устойчивостью понимается свойство системы возвращаться в состояние установившегося равновесия после устранения возмущения, нарушившего это состояние. Свойство устойчивости системы автоматического управления принято иллюстрировать состояниями равновесия шара, находящегося на разных поверхностях (рис. 74).
На рис. 74а система устойчиваи шар возвращается в начальное положение после исчезновения силы, сместившей его из этого положения, на рис. 74бсистема неустойчива, на рис. 74в изображенобезразличноеположение равновесия шара.
При приложении к САУ внешних воздействий (управляющих воздействий или возмущений) в системе возникает переходный процесс у(t), который складывается из двух составляющих: свободные движения системыyc(t), определяемые начальными условиями и свойствами самой системы, и вынужденные движенияyв(t), определяемые внешним воздействием и свойствами системы:
y(t)=yc(t)+yв(t).
Система будет устойчива, если её свободные движения затухают со временем и в системе устанавливается вынужденный процесс
Для неустойчивых систем это условие не выполняется, и практическое их использование является невозможным.
Таким образом, свойство устойчивости САУ является весьма важным свойством, совершенно необходимым для обеспечения работоспособности системы. Поэтому исследование устойчивости САУ является важным элементом теории автоматического управления.
Показателем
устойчивости или неустойчивости системы
служит вид переходной характеристики
системы. Для устойчивой системы переходная
характеристика сходится (т.е. стремится
к установившемуся значению выходной
величины (рис. 75а)). Свободный процесс в
устойчивой системе затухает (1колебательный процесс, 2 – апериодический
процесс).
Для неустойчивой системы переходная характеристика расходится (рис. 75б). При этом в системе не устанавливается постоянное значение управляемой величины в соответствии с задающим воздействием, а изменение этой величины будет происходить до некоторого предельного состояния системы, определяемого её свойствами. Неустойчивая система не обеспечивает адекватной реакции на задающее воздействие, поэтому такая система неработоспособна. В общем случае для получения переходной характеристики системы необходимо решить дифференциальное уравнение системы. По графику переходного процесса можно сделать заключение об устойчивости системы и об особенностях переходного процесса.
Условия устойчивости системы автоматического управления
Обыкновенная линейная система автоматического управления описывается дифференциальным уравнением с постоянными коэффициентами
Для устойчивости системы необходимо, чтобы свободный процесс в ней был бы сходящимся. Свободные движения системы описываются левой частью исходного дифференциального уравнения и, следовательно, уравнение свободного процесса в системе
.
Характеристическое уравнение замкнутой системы при этом запишется как
.
Характеристическое уравнение системы получается приравниванием к нулю знаменателя передаточной функции замкнутой системы.
Общее решение обыкновенного линейного дифференциального уравнения, имеющего порядок n:
,
где Ai– постоянные интегрирования,pi – корни характеристического уравнения,n– число корней.
Корни характеристического уравнения могут быть как вещественными, так и комплексными (попарно сопряжёнными). Каждый комплексный корень порождает в решении уравнения слагаемое вида
,
где – начальная фаза,Аi– начальная амплитуда.
При решении характеристического уравнения системы возможны различные случаи, в зависимости от соотношения его коэффициентов (т.е. в зависимости от параметров системы).
1. Корни характеристического уравнения имеют отрицательные вещественные части. В этом случае для всех слагаемых
и, следовательно, свободный процесс затухает. Система устойчива, а графики переходного процесса показаны на рис. 76 (для каждого слагаемого). На рис. 76а показан затухающий апериодический процесс, а на рис. 76б затухающий колебательный процесс (пунктиром показана огибающая колебательного процесса). Апериодический процесс будет наблюдаться при чисто вещественном корне характеристического уравнения, колебательный – при комплексном корне.
2. Среди корней характеристического уравнения есть хотя бы один корень с положительной вещественной частью. В этом случае в общем решении дифференциального уравнения для свободного процесса появится слагаемое, стремящееся к бесконечности с увеличением времени:
и переходный процесс будет расходящимся (рис. 77). Графики показаны для одного слагаемого общего решения. Система в этом случае неустойчива.
3. Характеристическое уравнение имеет хотя бы одну пару комплексных корней с нулевой вещественной частью. В решении дифференциального уравнения появляется гармоническая составляющая
,
порождающая незатухающую гармоническую
составляющую переходного процесса
(рис. 78). При
переходный процесс системы будет носить
характер незатухающих колебаний. Принято
считать, что в этом случае система
находится на границе устойчивости. Этот
случай представляет чисто теоретический
интерес и в реальных системах не
наблюдается.
Рассмотренные
случаи позволяют сформулировать
математическое условие устойчивости
для системы автоматического управления.Система автоматического управления
будет устойчива, если все вещественные
корни характеристического уравнения
системы отрицательны, а все комплексные
корни имеют отрицательные вещественные
части.
Е
Рис. 79
Поскольку корни характеристического уравнения определяются величиной и знаком коэффициентов дифференциального уравнения, то изменение коэффициентов, вследствие изменения параметров системы, может привести к нарушению условия устойчивости. Для исследования устойчивости системы автоматического управления необходимо проверить выполнение условия устойчивости для дифференциального уравнения системы. Система, для которой условие устойчивости выполняется, будет устойчивой (т.е. работоспособной).