Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЕОР МЕХ для подг к экз / 1 Статика / 3Статика Уч пос в виде презентации.ppt
Скачиваний:
42
Добавлен:
30.03.2015
Размер:
2.66 Mб
Скачать

в ту сторону, откуда вращение плоскости под действием парыЛекцияпредставляется происходящим против часовой стрелки.6 (продолжение – 6.2)

 

Момент пары сил в пространстве – вектор, перпендикулярный плоскости действия пары, направленный

 

Модуль вектора момента пары равен произведению одной из сил пары на плечо пары:

 

Теоремы о парах: (Теоремы приводятся без доказательств. Подробные доказательства с графической анимацией см. демонстрационную программу автора по теории пар “Теория пар” на сайте МИИТа. Посмотреть… )

О переносе пары сил в плоскость, параллельную плоскости ее действия – Пару сил можно перенести в любую плоскость, параллельную плоскости ее действия. Кинематическое состояние тела не изменится.

Об эквивалентности пар сил – Пару сил можно заменить другой парой сил, если их моменты геометрически (векторно) равны. Кинематическое состояние тела не изменится.

О сложении пар сил на плоскости – Систему пар сил на плоскости можно заменить одной парой, момент которой равен геометрической (векторной) сумме моментов исходных пар. Кинематическое состояние тела не изменится.

Условие равновесия системы пар сил -

M (F , F )

F

 

d

M Fd F d

F

M M i 0

Далее будем по-прежнему придерживаться общего плана исследования системы сил, последовательно решая три вопроса :

1.Как упростить систему?

2.Каков простейший вид системы?

3.Каковы условия равновесия системы?

Приведение плоской произвольной системы сил к заданному центру выбираем произвольную точку на плоскости и каждую из сил переносим по методу Пуансо в эту точку. Вместо исходной произвольной системы получим сходящуюся систему сил и систему пар.

В отличие от ранее рассмотренной плоской произвольной системы сил теперь при использовании метода Пуансо присоединенные пары сил характеризуются векторами.

 

F2

 

Сходящаяся система сил приводится к одной

 

 

 

 

 

Система пар приводится к одной паре (теоремаВ общем случае плоская произвольная система

 

 

 

сумме моментов исходных сил относительно

сил приводится к одной силе, называемой

 

 

 

главным вектором и к паре с моментом, равным

F

 

 

 

 

F3 h1

h2

 

MO

главному моменту всех сил системы

 

 

 

R *

относительно центра приведения:

 

 

h3

 

R * Fi

 

 

F

 

F1

 

 

- главный вектор,

2

F2

 

 

 

 

 

F1

 

 

 

M M A M iA

- главный момент.

A

F

 

A

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

19

 

Лекция 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аналитическое определение главного вектора системы – вычисляется так же, как и ранее равнодействующая, через проекции

на координатные оси и единичные векторы (орты):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R * Fi F1

F2

.... X1i Y1 j Z1k X 2i Y2 j Z2 k ...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* (X

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

1

2

...)i

(Y

Y ...) j (Z

1

Z

2

...)k

R*i

R*

j

R*k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

y

 

z

 

Отсюда

Rx*

X i ;

проекции

R*y

Yi ;

главного вектора :

 

Rz*

Zi ;

Направляющие

косинусы главного вектора

cos(R * , x)

cos(R * , y)

Rx* ; R*

R*y . R*

Модуль

главного вектора : R* Rx*2 R*y2 Rz*2

Аналитическое определение главного момента системы – вычисляется аналогично через проекции на координатные оси и

 

единичные векторы (орты):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M A Mi M1 M 2

 

.... M1xi M1y j M1z k M 2xi M 2 y j M 2z k ...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

A

(M1x

M 2x

...)i

(M1y M 2 y

...) j (M1z M 2z ...)k M xi M y j M z k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Отсюда

 

M x M ix ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Условие приведения системы к

равнодействующей:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M y M iy ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

проекции

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:

2

2

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

*

M A cos(

*

, M A ) 0

 

 

 

 

 

 

 

M A M x

M y M z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

главного момента :

 

M z M iz ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

M A R

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0;

 

 

 

 

*

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

R

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Условием равновесия пространственной

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi 0

 

 

 

 

 

 

M M A M iA 0

 

 

 

 

 

одновременное обращение главного вектора

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R * M A ;

 

R * M A 0 (cos(R * , M A )

0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Уравнения равновесия получаются

В аналитической (координатной) форме:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X i 0;

 

 

 

 

 

 

 

 

M xi 0;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

с использованием выражений для проекций

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yi 0;

 

 

 

 

 

 

 

 

M уi 0;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R * M A Rx*M x R*y M y Rz*M z 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Возможные случаи

 

 

 

 

 

 

 

 

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zi 0;

 

 

 

 

 

 

 

 

 

M zi

0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

приведения

 

 

 

 

 

 

R

 

 

 

 

 

M A

Дополнительное условие

 

 

 

 

Простейший вид системы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

пространственной

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

произвольной

1

R * 0

 

 

 

 

A 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Условия равновесия

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

системы сил:

 

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

R

R

 

 

 

 

 

 

 

 

 

 

 

0

M A 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Равнодействующая

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

R * 0

M A 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пара сил

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

4

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R * M A

 

 

 

 

Равнодействующая

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

M A 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R * M A

 

 

 

 

Силовой винт (сила и пара)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

R

 

 

 

 

 

 

 

 

 

 

 

 

Лекция 7 (продолжение – 7.2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Зависимость главного момента системы от выбора центра приведения рассмотрим как изменяется момент произвольной силы Fi

при переходе от одного центра приведения к другому и запишем выражения для моментов силы относительно каждого из центров:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A (

 

)

 

Ai

 

 

 

 

B (

 

)

 

Bi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi

 

 

 

 

 

 

 

 

M

Fi

r

Fi

 

 

M

Fi

r

Fi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

или

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Свяжем между собой точки приведения A и B радиус-вектором d:

d

 

 

 

 

Ai

 

 

Bi

 

 

 

 

Bi

 

 

Ai d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

r

 

 

r

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Подставим радиус-вектор r в выражение для момента силы M (F):

 

 

 

 

(

 

 

 

) (

 

 

 

 

 

 

 

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

M

 

F

 

 

 

 

d

F

 

 

 

 

 

 

F

d

F

 

 

 

 

 

 

Ai

 

 

 

r

 

 

 

 

B

r

Ai

r

 

 

 

 

 

 

 

 

 

Bi

 

 

 

 

 

 

 

 

 

 

 

 

 

Bi

 

 

 

 

B i

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

Ai

 

 

 

 

 

i

 

 

 

i

 

 

 

 

 

 

d

 

 

3. Просуммируем моменты всех сил MB(Fi):

 

 

B (

 

)

 

Ai

 

 

 

 

 

 

 

 

 

 

 

A (

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

Fi

 

Fi

 

d

Fi

M

Fi

) d

Fi

 

 

 

 

 

 

 

 

 

 

r

A

 

 

 

 

 

 

 

 

 

B

 

4. Получили зависимость главного момента сил от выбора центра приведения:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M B M A d R

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рассмотрим более подробно приведение системы сил к простейшему виду с использованием этой зависимости. Пусть система привелась в точке A к главному вектору R* и паре с главным моментом MA, имеющих между собой произвольный угол α.

 

 

*

 

 

*

 

*

 

 

 

R

R

R

 

 

 

 

 

 

 

1

 

 

M *

M A

A d

O

1. Разложим главный момент пары MA на два момента M* и M1, по двум направлениям:

направлению главного вектора и перпендикулярно ему.

2. Представим пару сил с моментом M1, в виде сил, равных по модулю главному вектору.

Плечо этой пары будет равно:

d M1

 

3. Систему сил в точке A удалим (аксиома присоединения).

R*

4. Оставшуюся пару сил с моментом M* перенесем в точку приложения оставшейся силы R’* (теорема о переносе пары в пространстве).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таким1 образом, исходная система сил в центре приведения A в новом центре приведения O превратилась в силовой (статический)

 

 

 

 

 

 

 

 

винт и более не может быть упрощена. Перпендикулярная главному вектору составляющая главного момента M1 исчезла, а другая

 

 

 

 

 

 

 

 

*

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

составляющая M* осталась неизменной. Заметим, исходная величина главного момента равна:

 

M A

 

 

M

*2

 

2

 

M

*2

(R

*

d)

2

 

 

 

 

 

 

R1

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

 

 

 

 

 

При

Умножая на модуль главного вектора левую и правую части выражения главного минимального момента в проекции

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

на центральную ось получаем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

минимальным

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R*M * R*M A cos(

 

A ,

 

* )

 

*

 

A

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

R

R

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

откуда главный минимальный момент выражается через скалярное произведение:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

оси.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M *

R * M

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Можно

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

поверхности)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M *

 

 

 

 

 

 

 

 

Главный минимальный момент может быть вычислен как проекция главного момента в любой

 

 

 

 

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M *2 (R*d)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

точке приведения на центральную ось:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M * M A cos M A cos(

M

A ,

R

* )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Лекция 7 (продолжение – 7.3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Инварианты системы сил величины, не зависящие от выбора центра приведения:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Первый (векторный) инвариант главный вектор системы сил R*:

 

 

 

 

 

 

 

 

R * Fi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Главный момент не является инвариантом, поскольку он зависит от выбора центра приведения. Однако существует

 

величина, связанная с главным вектором, не зависящая от выбора центра приведения:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Запишем зависимость для главного момента системы от выбора точки приведения:

 

 

 

 

 

 

 

M

B

M

A d

 

R

*

 

 

 

2. Умножим левую и правую части этого выражения скалярно на главный вектор и раскроем скобки:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

*

M

B

R

* (

M

A d

 

 

R

* )

R

*

M

A

R

* (d

R

* )

 

 

 

 

 

 

 

 

 

 

3. Второе слагаемое в правой части обращается в ноль, т.к. главный вектор R* перпендикулярен вектору векторного произведения

 

в скобках. Отсюда получаем тождество:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R * M B R * M A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Таким образом, скалярное произведение главного вектора R*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

 

in var

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

на вектор главного момента M есть второй (скалярный) инвариант:

 

 

R

M

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

R * M A

in var in var

 

Отсюда, главный минимальный момент M* также является инвариантной величиной: M

 

 

 

Теоремы Вариньона о моментах равнодействующей для пространственной системы сил:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

*

 

 

 

in var

 

Если система сил имеет равнодействующую, то

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

момент равнодействующей относительно любого центра равен геометрической сумме моментов сил системы относительно того же центра.

момент равнодействующей относительно любой оси равен алгебраической сумме моментов сил системы относительно той же оси.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Доказательство: Пусть система сил F1, F2, F3 … приводится к равнодействующей,

 

 

 

 

 

 

 

F3

 

 

 

 

 

 

 

 

 

 

F2

 

 

 

 

 

 

 

 

приложенной в точке O. Такая система не находится в равновесии (R ≠ 0).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Уравновесим эту систему силой R, равной равнодействующей R, направленной по линии ее

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

действия в противоположную сторону (аксиома о двух силах).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

Система исходных сил F1, F2, F3 … и уравновешивающей силы R’ находится

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

в равновесии и должна удовлетворять условиям равновесия, например:

MiA M A (R ) 0

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Поскольку сила R’, равна равнодействующей R и направлена по линии ее действия

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

в противоположную сторону, то MA(R) = - MA(R). Подстановка этого равенства в уравнение

 

 

 

 

 

 

 

 

 

 

R R

 

 

 

 

 

 

 

 

 

A

равновесия дает:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

iA

M

A (

R

) 0

или

M A

(R) MiA

 

 

F1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M x

(

 

) Mix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cпроектируем это векторное равенство на любую ось, например, x:

R

 

 

 

 

 

 

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Сложение параллельныхЛекциясил Сложение двух параллельных8 сил подробно рассмотрено в демонстрационной программе автора по теории пар “Теория пар” на сайте МИИТа. Посмотреть… ). Основной результат – две параллельные и направленные в одну сторону силы приводятся к одной силе – равнодействующей, приложенной в точке, делящей прямую на расстояния, обратно пропорциональные величинам сил.

Последовательно складывая попарно параллельные силы приходим также к одной силе – равнодействующей R:

Поскольку силу можно переносить по линии ее действия, то точка приложения силы (равнодействующей) по существу не определена. Если все силы повернуть на один и тот же угол и вновь провести сложение сил, то получаем другое направление линии действия

равнодействующей. Точка пересечения этих двух линий действия равнодействующих может рассматриваться, как точка приложения равнодействующей, не изменяющей своего положения при одновременном повороте всех сил на один и тот же угол. Такая точка называется

центром параллельных сил

R Fi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Центр параллельных сил точка приложения равнодействующей, не изменяющей своего положения

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

при одновременном повороте всех сил на один и тот же угол.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С

 

 

 

 

 

 

 

 

 

 

Для аналитического определения положения центра параллельных сил применим теорему Вариньона:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

2

 

 

 

 

 

 

F2

 

 

M A (R) MiA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

или

 

 

rC R ri Fi

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Каждую из сил представим с помощью единичного вектора e , параллельному линиям действия сил:

 

 

 

rC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi Fi e

и

 

 

R Fi

Fi e

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Fi e)

 

 

Fi e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

 

Тогда предыдущее равенство примет вид:

 

rC

ri

 

 

или после перестановки

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

С учетом

 

принятых гипотез при определении положения центра тяжести можно использовать

 

 

 

формулы для

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i ri ) e

 

 

 

 

 

Из

 

 

определения положения центра параллельных сил:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gi xi

 

 

Gi yi ;

zC Gi zi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi ri

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xC

; yC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gi

 

 

Gi

 

 

 

Gi

 

 

где G – силы тяжести элементарных объемов.

 

 

 

 

 

 

 

 

Проекции

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

аналитические формулы для

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

определения координат центра параллельных сил:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xC

Fi xi

; yC

 

Fi yi

;

zC

Fi zi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fi

 

Fi

 

 

 

 

Fi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Центр тяжести центр приложения равнодействующей сил тяготения (веса) материального тела. При определении положения центра тяжести тела используются гипотезы:

1.Линии действия сил тяготения, приложенные к отдельным частицам тела, параллельны (рассматриваемые тела имеют размеры много меньшие радиуса Земли и углом между линиями действия сил тяготения частиц тел можно пренебречь);

2.Ускорение свободного падения g = const (высота рассматриваемых тел много меньше радиуса Земли и изменением величины ускорения свободного падения по высоте тела можно пренебречь)

3.Рассматриваемые тела – однородные (нет включений материалов с другой плотностью) и сплошные (нет пустот).

23

 

Лекция 8 (продолжение – 8.2)

 

Определение положения центра тяжести однородных тел – Выделим элементарный объем dV = dxdydz. Сила тяжести такого объема равна dG

 

= dV, где =const - объемный вес. Замена суммирования дискретных сил тяжести Gi непрерывным распределением приводит к интегральным

 

выражениям по объему тела для определения координат центров тяжести, например, координаты xC:

 

 

xdG

 

x dxdydz

 

xdV

 

 

 

 

 

 

 

xdV

 

xc

G

 

 

 

V

 

Для всех трех координат получаются подобные выражения:

x

 

V

 

 

dG

dxdydz

dV

 

 

 

 

 

 

 

 

c

 

 

dV

 

 

G

 

 

 

V

 

 

 

 

 

 

 

V

В частном случае плоского тела (постоянной толщины H =const ), dV = Hdxdy = HdS:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xHdxdy

 

 

xdS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hdxdy

 

 

 

dS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

ydV

yc V

dV

V

xdS

xc S

dS

S

zdV

zc V

dV

V

ydS

yc S

dS

S

 

 

Для линейного тела (постоянного поперечного сечения S = const,

 

 

 

 

 

 

 

xSdL

xdL

 

 

 

 

xdL

 

 

 

 

 

ydL

 

 

ось – плоская кривая),

dV = SdL:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

L

 

 

 

 

xc

L

 

 

 

 

 

yc

L

 

 

Определение положения центра тяжести простейших плоских тел:

 

 

 

 

 

 

 

 

 

c

 

SdL

dL

 

 

 

 

 

dL

 

 

 

 

 

dL

 

y

Прямоугольник: dS=bdy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

 

 

 

 

 

L

 

 

 

 

 

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Круговой сектор:

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

 

 

 

 

 

 

dS

R(Rd )

R2 d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b y2

 

 

 

 

 

 

 

 

 

R d

 

 

 

 

 

 

 

 

 

 

dy

 

ydS

 

h

ybdy

 

 

b

 

h

ydy

 

 

 

 

 

h

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

h

yc

S

 

0

 

 

 

 

0

 

 

 

2 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

xdS

 

 

 

2

R cos

R

d

 

 

dS

h

bdy

b

h

 

bh

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

0

 

 

0

dy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

xc

 

2 0

3

 

2

 

 

x

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS

 

 

 

 

 

 

d

 

 

 

 

b

 

 

 

 

by

 

h y

 

 

 

 

 

 

h y

 

 

 

 

 

 

 

 

h y

 

 

 

 

S

 

 

 

 

 

 

2 0

2

 

 

 

 

 

 

 

 

 

;

 

 

by

 

b;

dS by dy

 

bdy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

Треугольник:

 

b

 

h

 

 

 

 

h

 

 

 

 

h

 

 

 

 

 

 

 

2 R3 sin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

y

2

 

y

3

 

h

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

0

 

 

2 R sin

 

 

 

 

 

 

 

 

 

h y

 

 

 

 

 

 

b h

 

 

 

 

 

 

 

 

 

 

 

 

bh

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ydS

 

h

y

bdy

 

 

(hy

 

y

2

)dy

 

h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

3

 

 

 

dy

 

 

0

h

 

 

 

h 0

 

 

 

 

2

 

3

 

 

 

 

 

6

h

 

 

 

 

 

 

R

 

 

 

 

 

 

 

yc

S

 

 

 

 

 

 

 

 

 

h (h y)dy

 

h

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

dS

h h y bdy

 

b

 

b

 

 

 

y2 h

 

1 bh 3

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

S

 

0

 

h

 

 

 

 

 

 

 

h

0

 

 

 

 

 

 

 

hy

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Лекция 8 (продолжение – 8.3)

Методы определения положения центра тяжести сложных фигур –

 

1. Метод разбиения – сложная фигура разбивается на совокупность простых фигур, для которых известны положения центра тяжести или легко

 

определяются:

 

y

 

1

 

2

 

x

x1

x2

 

xC

xi S i

 

x1S1 x2 S2

 

S i

S1

S2

 

 

y

2

1

x

x1

x2

2. Метод отрицательных площадей – так же, как и в методе разбиения, сложная фигура разбивается на совокупность простых фигур, для которых известны

положения центра тяжести или легко определяются, но при наличии отверстий или пустот удобно их представление в виде “отрицательных” областей. Например, следующая фигура вместо разбиения на 4 обычных прямоугольника, может быть представлена как совокупность двух прямоугольников, один из которых имеет отрицательную площадь:

xC

xi S i

 

x1S1 x2 ( S2 )

S i

S1

( S2 )

 

 

Замечание. Поскольку координата, например, x2, может быть отрицательна, то не следует представлять это выражение с использованием разностей:

3. Метод симметрии – при наличии у фигуры оси или плоскости симметрии центр тяжести лежит на этой оси

xC

 

x1S1 x2 S2

 

. С учетом

S1 S2

этого свойства уменьшается количество координат центра тяжести, подлежащих определению. См.,

 

 

положения

центра тяжести кругового сектора.

 

 

 

 

 

4.Метод интегрирования – при наличии у фигуры достаточно простого контура, описываемым известным уравнением (окружность, парабола

ит.п.), выбирается элементарная площадка или полоска и выполняется аналитическое интегрирование. См. например, определение положения центра тяжести треугольника или кругового сектора. При более сложном контуре, который может быть разбит на более простые граничные отрезки используется предварительно метод разбиения. При сложностях с аналитическим интегрированием

используются численные методы интегрирования.

5. Метод подвешивания – экспериментальный метод, основанный на том, что при подвешивании тела или фигуры за какую-либо произвольную точку центр тяжести находится на одной вертикали с точкой подвеса. Для определения положения центра тяжести

плоской фигуры достаточно

поочередно за две любые точки и прочертить соответствующие вертикали, например, с

помощью отвеса, и точка

соответствует положению центра тяжести фигуры.

25