Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика 2012-13 Бакалавры / 4_Конспект лекций / Котюргина Численные методы.doc
Скачиваний:
160
Добавлен:
30.03.2015
Размер:
4.65 Mб
Скачать

3. Метод Зейделя

Модификацией метода простой итерации можно считать метод Зейделя.

В методе простой итерации на -ой итерации значения,вычисляются подстановкой в правую часть (6) вычисленных на предыдущей итерации значений. В методе Зейделя при вычислении используются значения, , , уже найденные на -ой итерации, а не , , …, , как в методе простой итерации, т.е. -е приближение строится следующим образом:

(9)

Эти формулы являются расчетными формулами метода Зейделя.

Введем нижнюю и верхнюю треугольные матрицы:

и

Матричная запись расчетных формул (9) имеет вид: . Так как, точное решениеисходной системы удовлетворяет равенству:.

Сходимость метода Зейделя. Достаточным условием сходимости метода Зейделя является выполнение неравенства:

. (10)

Неравенство (10) означает, что для сходимости метода Зейделя достаточно, чтобы любая норма матрицы был меньше единицы.

Если выполнено условие (10), то справедлива следующая оценка погрешности:

, (11)

где норма матрицы.

Критерий окончания. Если требуется найти решение с точностью , итерационный процесс следует закончить, как только на-ом шаге выполнится неравенство:. Поэтому в качестве критерия окончания итерационного процесса можно использовать неравенство, где . Если выполняется условие

, то можно пользоваться более простым критерием окончания:

.

Метод Зейделя, как правило, сходится быстрее, чем метод простой итерации. Однако, возможны ситуации, когда метод простой итерации сходится, а

метод Зейделя сходится медленнее или вообще расходится.

Пример. Применим метод Зейделя для решения системы уравнений из предыдущего примера. Первые шаги полностью совпадают с процедурой решения по методу простых итераций. Проведем теперь итерации методом Зейделя.

При

.

При вычислении используем уже полученное значение:

.

При вычислении используем уже полученные значения и:

.

При вычислении используем уже полученные значения,,:

.

Аналогичным образом проведем вычисления при и.

Получим:

при

.

при

.

Известны точные значения переменных:

.

Сравнение с предыдущим примером показывает, что метод Зейделя сходится быстрее и дает более точный результат.

Решение систем нелинейных уравнений

1. Постановка задачи

Многие практические задачи сводятся к решению системы нелинейных уравнений. Пусть для вычисления неизвестных требуется решить системунелинейных урав­нений:

, иначе .

В отличие от решения СЛАУ не существует прямых методов решения систем нелинейных урав­нений. Лишь в отдельных случаях эту систему можно решить непосредственно. Например, для случая двух неизвестных иногда удается выразить одно неизвестное через другое и таким об­ра­зом свести задачу к решению одного нелинейного уравнения относительно другого.

В общем случае для решения систем нелинейных уравнений обычно используются итера­ци­онные методы.