
- •О.Т.Данилова Теория информации
- •Введение
- •Глава 1. Основные понятия теории информации
- •1.1. Свойства информации
- •1.2. Этапы обращения информации
- •1.3. Определение системы передачи информации. Каналы связи.
- •1.4. Алфавит сообщения
- •1.5. Источник информации
- •Глава 2. Количество информации
- •2.1. Объемный подход к измерению информации
- •2.2. Количественная мера информации р.Хартли
- •2.3. Мера информации к. Шеннона
- •2.4. Условная собственная информация. Взаимная информация
- •1 (Бит), где m – мощность алфавита.
- •Глава 3. Энтропия дискретной последовательности. Энтропия непрерывной случайной величины
- •3.1. Частная энтропия
- •Прологарифмировав последнее равенство, получим
- •3.2. Энропия типичных и нетипичных комбинаций
- •3.3. Условная энтропия
- •3.4. Энтропия объединения ансамблей
- •3.5. Канальные матрицы
- •3.6. Количество информации при неполной достоверности и статистической зависимости сообщений
- •3.7. Избыточность источника
- •3.8. Энтропия непрерывной случайной величины
- •3.9. Количество информации для непрерывных систем
- •3.10. Принцип экстремума энтропии и экстремальные распределения
- •Подставим (3.7) в (3.4):
- •3.11. Эпсилон энтропия
- •Глава 4. Общие сведения из теории сигналов
- •4.1. Классификация сигналов и систем
- •Характеристики сигналов передаваемых по каналу
- •4.3. Модуляция сигналов. Виды и характеристики носителей
- •4.4. Спектры сигналов
- •4.5. Тригонометрическая форма
- •4.6. Комплексная форма
- •4.7. Определение погрешности
- •Глава 5. Скорость передачи и пропускная способность канала связи
- •5.1. Скорость передачи информации в дискретной системе связи
- •5.2. Пропускная способность однородного симметричного канала связи
- •5.3. Пропускная способность непрерывного канала связи
- •5.4. Обмен мощности сигнала на ширину его спектра
- •5.5. Сравнение пропускной способности непрерывного и дискретного каналов связи.
- •5.6. Эффективность систем связи
- •Глава 6. Критерии описания реальных дискретных каналов
- •6.1. Описание источника ошибок на основе цепей Маркова
- •6.2. Описание источника ошибок на основе процессов восстановления
- •6.3. Описание источника ошибок на основе процессов накопления
- •6.4. Модель Гилберта
- •6.5. Модель Эллиота-Гилберта. Модель Элиота
- •6.6. Модель Беннета-Фройлиха
- •6.7. Модель Попова - Турина
- •Глава 7. Кодирование информации
- •7.1. Статистическое кодирование дискретных сообщений
- •7.2. Статистическое кодирование кодовых слов
- •Средняя длина кодового слова
- •7.3. Кодирование информации для канала с помехами
- •7.3. Разновидности помехоустойчивых кодов
- •7.4 Общие принципы использования избыточности
- •7.5. Связь корректирующей способности кода с кодовым расстоянием
- •7.6. Понятие качества корректирующего кода
- •7.7. Линейные коды
- •7.7. Математическое введение к линейным кодам
- •7.8. Линейный код как пространство линейного векторного пространства
- •7.9. Построение двоичного группового кода
- •7.10. Составление таблицы опознавателей
- •7.11. Определение проверочных равенств
- •7.12. Мажоритарное декодирование групповых кодов
- •7.13. Матричное представление линейных кодов
- •7.14. Построение циклических кодов
- •Математическое введение к циклическим кодам
- •7.17. Обнаружение одиночных ошибок
- •Исправление одиночных или обнаружение двойных ошибок
- •7.18. Обнаружение ошибок кратности три и ниже
- •7.19. Обнаружение и исправление независимых ошибок произвольной кратности
- •7.20. Методы образования циклического кода
- •7.21. Матричная запись циклического кода
- •7.22. Укороченные циклические коды
- •Глава 8. Сжатие информации
- •8.1. Основные понятия
- •8.2. Методы сжатия без потерь
- •8.3. Методы сжатия с потерями
- •8.4. Сжатие графики
- •Прямое дкп
- •8.5. Сжатие звука
- •8.6. Сжатие видеоинформации
- •Вопросы для самопроверки
- •Список литературы
7.4 Общие принципы использования избыточности
Способность кода обнаруживать и исправлять ошибки обусловлена наличием в нем избыточных символов.
На вход кодирующего устройства поступает последовательность из k информационных двоичных символов. На выходе ей соответствует последовательность из n двоичных символов, причем n>k.
Всего может быть 2k различных входных и 2n различных выходных последовательностей.
Из общего числа 2n выходных последовательностей только 2k последовательностей соответствуют входным. Их называют разрешенными кодовыми комбинациями.
Остальные 2n-2k возможных выходных последовательностей для передачи не используются. Их называют запрещенными кодовыми комбинациями.
Искажения информации в процессе передачи сводятся к тому, что некоторые из передаваемых символов заменяются другими – неверными.
Так как каждая из 2k разрешенных комбинаций в результате действия помех может трансформироваться в любую другую, то всегда имеется 2k*2n возможных случаев передачи. В это число входят:
2k случаев безошибочной передачи;
2k(2k –1) случаев перехода в другие разрешенные комбинации, что соответствует необнаруженным ошибкам;
2k(2n – 2k) случаев перехода в неразрешенные комбинации, которые могут быть обнаружены.
Следовательно, часть обнаруживаемых ошибочных кодовых комбинаций от общего числа возможных случаев передачи составляет
.
Пример 7.1. Определить обнаруживающую способность кода, каждая комбинация которого содержит всего один избыточный символ (n=k+1).
Решение. 1. Общее число выходных последовательностей составляет 2k+1, т.е. вдвое больше общего числа кодируемых входных последовательностей.
2. За подмножество разрешенных кодовых комбинаций можно принять, например, подмножество 2k комбинаций, содержащих четное число единиц (или нулей).
3. При кодировании к каждой последовательности из k информационных символов добавляют один символ (0 или 1), такой, чтобы число единиц в кодовой комбинации было четным. Исполнение любого нечетного числа символов переводит разрешенную кодовую комбинацию в подмножество запрещенных комбинаций, что обнаруживается на приемной стороне по нечетности числа единиц. Часть опознанных ошибок составляет
.
Любой метод декодирования можно рассматривать как правило разбиения всего множества запрещенных кодовых комбинаций на 2k пересекающихся подмножеств Mi, каждая из которых ставится в соответствие одной из разрешенных комбинаций. При получении запрещенной комбинации, принадлежащей подмножеству Mi, принимают решение, что передавалась запрещенная комбинация Ai. Ошибка будет исправлена в тех случаях, когда полученная комбинация действительно образовалась из Ai, т.е. 2n-2k cлучаях.
Всего случаев перехода в неразрешенные комбинации 2k(2n – 2k). Таким образом, при наличии избыточности любой код способен исправлять ошибки.
Отношение числа исправляемых кодом ошибочных кодовых комбинаций к числу обнаруживаемых ошибочных комбинаций равно
.
Способ разбиения на подмножества зависит от того, какие ошибки должны направляться конкретным кодом.
Большинство разработанных кодов предназначено для корректирования взаимно независимых ошибок определенной кратности и пачек (пакетов) ошибок.
Взаимно независимыми ошибками называют такие искажения в передаваемой последовательности символов, при которых вероятность появления любой комбинации искаженных символов зависит только от числа искаженных символов r и вероятности искажения обычного символа p.
При взаимно независимых ошибках вероятность искажения любых r символов в n-разрядной кодовой комбинации:
,
где p
– вероятность искажения одного символа;
r
– число искаженных символов; n
– число
двоичных символов на входе кодирующего
устройства;
–
число ошибок порядка r.
Если учесть, что p<<1, то в этом случае наиболее вероятны ошибки низшей кратности. Их следует обнаруживать и исправлять в первую очередь.