
- •О.Т.Данилова Теория информации
- •Введение
- •Глава 1. Основные понятия теории информации
- •1.1. Свойства информации
- •1.2. Этапы обращения информации
- •1.3. Определение системы передачи информации. Каналы связи.
- •1.4. Алфавит сообщения
- •1.5. Источник информации
- •Глава 2. Количество информации
- •2.1. Объемный подход к измерению информации
- •2.2. Количественная мера информации р.Хартли
- •2.3. Мера информации к. Шеннона
- •2.4. Условная собственная информация. Взаимная информация
- •1 (Бит), где m – мощность алфавита.
- •Глава 3. Энтропия дискретной последовательности. Энтропия непрерывной случайной величины
- •3.1. Частная энтропия
- •Прологарифмировав последнее равенство, получим
- •3.2. Энропия типичных и нетипичных комбинаций
- •3.3. Условная энтропия
- •3.4. Энтропия объединения ансамблей
- •3.5. Канальные матрицы
- •3.6. Количество информации при неполной достоверности и статистической зависимости сообщений
- •3.7. Избыточность источника
- •3.8. Энтропия непрерывной случайной величины
- •3.9. Количество информации для непрерывных систем
- •3.10. Принцип экстремума энтропии и экстремальные распределения
- •Подставим (3.7) в (3.4):
- •3.11. Эпсилон энтропия
- •Глава 4. Общие сведения из теории сигналов
- •4.1. Классификация сигналов и систем
- •Характеристики сигналов передаваемых по каналу
- •4.3. Модуляция сигналов. Виды и характеристики носителей
- •4.4. Спектры сигналов
- •4.5. Тригонометрическая форма
- •4.6. Комплексная форма
- •4.7. Определение погрешности
- •Глава 5. Скорость передачи и пропускная способность канала связи
- •5.1. Скорость передачи информации в дискретной системе связи
- •5.2. Пропускная способность однородного симметричного канала связи
- •5.3. Пропускная способность непрерывного канала связи
- •5.4. Обмен мощности сигнала на ширину его спектра
- •5.5. Сравнение пропускной способности непрерывного и дискретного каналов связи.
- •5.6. Эффективность систем связи
- •Глава 6. Критерии описания реальных дискретных каналов
- •6.1. Описание источника ошибок на основе цепей Маркова
- •6.2. Описание источника ошибок на основе процессов восстановления
- •6.3. Описание источника ошибок на основе процессов накопления
- •6.4. Модель Гилберта
- •6.5. Модель Эллиота-Гилберта. Модель Элиота
- •6.6. Модель Беннета-Фройлиха
- •6.7. Модель Попова - Турина
- •Глава 7. Кодирование информации
- •7.1. Статистическое кодирование дискретных сообщений
- •7.2. Статистическое кодирование кодовых слов
- •Средняя длина кодового слова
- •7.3. Кодирование информации для канала с помехами
- •7.3. Разновидности помехоустойчивых кодов
- •7.4 Общие принципы использования избыточности
- •7.5. Связь корректирующей способности кода с кодовым расстоянием
- •7.6. Понятие качества корректирующего кода
- •7.7. Линейные коды
- •7.7. Математическое введение к линейным кодам
- •7.8. Линейный код как пространство линейного векторного пространства
- •7.9. Построение двоичного группового кода
- •7.10. Составление таблицы опознавателей
- •7.11. Определение проверочных равенств
- •7.12. Мажоритарное декодирование групповых кодов
- •7.13. Матричное представление линейных кодов
- •7.14. Построение циклических кодов
- •Математическое введение к циклическим кодам
- •7.17. Обнаружение одиночных ошибок
- •Исправление одиночных или обнаружение двойных ошибок
- •7.18. Обнаружение ошибок кратности три и ниже
- •7.19. Обнаружение и исправление независимых ошибок произвольной кратности
- •7.20. Методы образования циклического кода
- •7.21. Матричная запись циклического кода
- •7.22. Укороченные циклические коды
- •Глава 8. Сжатие информации
- •8.1. Основные понятия
- •8.2. Методы сжатия без потерь
- •8.3. Методы сжатия с потерями
- •8.4. Сжатие графики
- •Прямое дкп
- •8.5. Сжатие звука
- •8.6. Сжатие видеоинформации
- •Вопросы для самопроверки
- •Список литературы
Глава 7. Кодирование информации
7.1. Статистическое кодирование дискретных сообщений
Основой статистического (оптимального) кодирования сообщений является теорема К. Шеннона для каналов связи без помех.
Кодирование по методу Шеннона-Фано-Хаффмена называется оптимальным, так как при этом повышается производительность дискретного источника, и статистическим, так как для реализации оптимального кодирования необходимо учитывать вероятности появления на выходе источника каждого элемента сообщения ( учитывать статистику сообщений).
Производительность и избыточность дискретного источника согласно определениям равны, соответственно,
,
;
откуда получаем
.
Из этой формулы
видно, что для увеличения производительности
нужно уменьшать избыточность g
и среднюю длительность сообщений
.
Известно, что H(x)<Hmax(x), если априорные вероятности различных элементов сообщения различны (H(x)= Hmax(x) при равной вероятности этих элементов). Но при неравной вероятности сообщений можно применить оптимальное (статистическое) кодирование, при котором уменьшается средняя длительность сообщений.
Идея такого кодирования заключается в том, что, применяя неравномерный неприводимый код, наиболее часто встречающиеся сообщения (буквы или слова) кодируются короткими комбинациями этого кода, а редко встречающиеся сообщения кодируются более длительными комбинациями.
Рассмотрим принципы оптимального кодирования на приводимом ниже примере.
Пусть источник сообщений выдаёт 8 различных сообщений x1 ... x8 с вероятностями 0,495; 0,4; 0,026; 0,02; 0,018; 0,016; 0,015; 0,01 (сумма вероятностей равна 1).
Располагаем эти сообщения столбцом в порядке убывания вероятностей (рис. 20). Объединяем два сообщения с самыми минимальными вероятностями двумя прямыми и в месте их соединения записываем суммарную вероятность: p(x7)+p(x8)=0,015+0,01=0,025. В дальнейшем полученное число 0,025 учитываем в последующих расчётах наравне с другими оставшимися числами, кроме чисел 0,015 и 0,01. Эти уже использованные числа из дальнейшего расчёта исключаются.
Далее таким же образом объединяются числа 0,018 и 0,016, получается число 0,034, затем вновь объединяются два минимальных числа (0,02 и 0,025) и т.д.
Построенное
таким образом кодовое дерево используется
для определённых кодовых комбинаций.
Напомним, что для нахождения любой
кодовой комбинации надо исходить их
корня дерева (точка с вероятностью 1) и
двигаться по ветвям дерева к соответствующим
сообщениям x1
...
x8.
При движении по верхней ветви элемент
двоичного кода равен нулю, а при движении
по нижней – равен единице. Например,
сообщению x5
будет соответствовать комбинация 11010.
Справа от кодового дерева записаны
кодовые комбинации полученного
неравномерного кода. В соответствии с
поставленной задачей, наиболее часто
встречающееся сообщение x1
(вероятность 0,495) имеет длительность
в 1 элемент, а наиболее редко встречающиеся
комбинации имеют длительность в 5
элементов. В двух последних столбцах
рисунка приведено число элементов Nэi
в кодовой комбинации и величина
произведения p(xi)Nэi
, а
представляет собой число элементов,
приходящееся на одну комбинацию,
т.е. в данном случае
.
Если бы для
кодирования был применён равномерный
двоичный код, который чаще всего
применяется на практике, число элементов
в каждой кодовой комбинации для
кодирования восьми различных сообщений
равнялось бы трём (23=8),
т.е.
.
В рассматриваемом примере средняя длительность комбинаций благодаря применённому статистическому кодированию уменьшилась в 3/1,774=1,72 раза. Во столько же раз увеличилась и производительность источника (24).