
- •О.Т.Данилова Теория информации
- •Введение
- •Глава 1. Основные понятия теории информации
- •1.1. Свойства информации
- •1.2. Этапы обращения информации
- •1.3. Определение системы передачи информации. Каналы связи.
- •1.4. Алфавит сообщения
- •1.5. Источник информации
- •Глава 2. Количество информации
- •2.1. Объемный подход к измерению информации
- •2.2. Количественная мера информации р.Хартли
- •2.3. Мера информации к. Шеннона
- •2.4. Условная собственная информация. Взаимная информация
- •1 (Бит), где m – мощность алфавита.
- •Глава 3. Энтропия дискретной последовательности. Энтропия непрерывной случайной величины
- •3.1. Частная энтропия
- •Прологарифмировав последнее равенство, получим
- •3.2. Энропия типичных и нетипичных комбинаций
- •3.3. Условная энтропия
- •3.4. Энтропия объединения ансамблей
- •3.5. Канальные матрицы
- •3.6. Количество информации при неполной достоверности и статистической зависимости сообщений
- •3.7. Избыточность источника
- •3.8. Энтропия непрерывной случайной величины
- •3.9. Количество информации для непрерывных систем
- •3.10. Принцип экстремума энтропии и экстремальные распределения
- •Подставим (3.7) в (3.4):
- •3.11. Эпсилон энтропия
- •Глава 4. Общие сведения из теории сигналов
- •4.1. Классификация сигналов и систем
- •Характеристики сигналов передаваемых по каналу
- •4.3. Модуляция сигналов. Виды и характеристики носителей
- •4.4. Спектры сигналов
- •4.5. Тригонометрическая форма
- •4.6. Комплексная форма
- •4.7. Определение погрешности
- •Глава 5. Скорость передачи и пропускная способность канала связи
- •5.1. Скорость передачи информации в дискретной системе связи
- •5.2. Пропускная способность однородного симметричного канала связи
- •5.3. Пропускная способность непрерывного канала связи
- •5.4. Обмен мощности сигнала на ширину его спектра
- •5.5. Сравнение пропускной способности непрерывного и дискретного каналов связи.
- •5.6. Эффективность систем связи
- •Глава 6. Критерии описания реальных дискретных каналов
- •6.1. Описание источника ошибок на основе цепей Маркова
- •6.2. Описание источника ошибок на основе процессов восстановления
- •6.3. Описание источника ошибок на основе процессов накопления
- •6.4. Модель Гилберта
- •6.5. Модель Эллиота-Гилберта. Модель Элиота
- •6.6. Модель Беннета-Фройлиха
- •6.7. Модель Попова - Турина
- •Глава 7. Кодирование информации
- •7.1. Статистическое кодирование дискретных сообщений
- •7.2. Статистическое кодирование кодовых слов
- •Средняя длина кодового слова
- •7.3. Кодирование информации для канала с помехами
- •7.3. Разновидности помехоустойчивых кодов
- •7.4 Общие принципы использования избыточности
- •7.5. Связь корректирующей способности кода с кодовым расстоянием
- •7.6. Понятие качества корректирующего кода
- •7.7. Линейные коды
- •7.7. Математическое введение к линейным кодам
- •7.8. Линейный код как пространство линейного векторного пространства
- •7.9. Построение двоичного группового кода
- •7.10. Составление таблицы опознавателей
- •7.11. Определение проверочных равенств
- •7.12. Мажоритарное декодирование групповых кодов
- •7.13. Матричное представление линейных кодов
- •7.14. Построение циклических кодов
- •Математическое введение к циклическим кодам
- •7.17. Обнаружение одиночных ошибок
- •Исправление одиночных или обнаружение двойных ошибок
- •7.18. Обнаружение ошибок кратности три и ниже
- •7.19. Обнаружение и исправление независимых ошибок произвольной кратности
- •7.20. Методы образования циклического кода
- •7.21. Матричная запись циклического кода
- •7.22. Укороченные циклические коды
- •Глава 8. Сжатие информации
- •8.1. Основные понятия
- •8.2. Методы сжатия без потерь
- •8.3. Методы сжатия с потерями
- •8.4. Сжатие графики
- •Прямое дкп
- •8.5. Сжатие звука
- •8.6. Сжатие видеоинформации
- •Вопросы для самопроверки
- •Список литературы
Глава 5. Скорость передачи и пропускная способность канала связи
5.1. Скорость передачи информации в дискретной системе связи
В дискретной системе связи при отсутствии помех информация на выходе канала связи (канала ПИ) полностью совпадает с информацией на его входе, поэтому скорость передачи информации численно равна производительности источника сообщений:
.(5.1)
При наличии помех часть информации источника теряется и скорость передачи информации оказывается меньшей, чем производительность источника. Одновременно в сообщение на выходе канала добавляется информация о помехах (рис.12).
Поэтому при наличии помех необходимо учитывать на выходе канала не всю информацию, даваемую источником, а только взаимную информацию:
бит/с. (5.2)
На основании формулы (5.1) имеем
или
,
(5.3)
где H(x) производительность источника;
H(x/y) ненадёжность “ канала(потери) в единицу времени;
H(y) энтропия выходного сообщения в единицу времени;
H(y/x)=H’(n) –энтропия помех ( шума) в единицу времени.
Пропускной способностью канала связи (канала передачи информации) C называется максимально возможная скорость передачи информации по каналу
.(5.4)
Для достижения максимума учитываются все возможные источники на выходе и все возможные способы кодирования.
Таким образом, пропускная способность канала связи равна максимальной производительности источника на входе канала, полностью согласованного с характеристиками этого канала, за вычетом потерь информации в канале из-за помех.
В канале без помех C=max H(x), так как H(x/y)=0. При использовании равномерного кода с основанием k, состоящего из n элементов длительностью э, в канале без помех
,
при k=2
бит/c.
(5.5)
Для эффективного использования пропускной способности канала необходимо его согласование с источником информации на входе. Такое согласование возможно как для каналов связи без помех, так и для каналов с помехами на основании двух теорем, доказанных К.Шенноном.
1-ая теорема (для канала связи без помех):
Если источник сообщений имеет энтропию H (бит на символ), а канал связи – пропускную способность C (бит в секунду), то можно закодировать сообщения таким образом, чтобы передавать информацию по каналу со средней скоростью, сколь угодно близкой к величине C, но не превзойти её.
К.Шеннон предложил и метод такого кодирования, который получил название статистического или оптимального кодирования. В дальнейшем идея такого кодирования была развита в работах Фано и Хаффмена и в настоящее время широко используется на практике для “cжатия сообщений”.
5.2. Пропускная способность однородного симметричного канала связи
В однородном канале связи условные(переходные) вероятности p(y1/x1) не зависят от времени. Граф состояний и переходов однородного двоичного канала связи приведен на рис. 13.
Рис.13
На этом рисунке x1 и x2 – сигналы на входе канала связи, y1 и y2 – сигналы на выходе. Если передавался сигнал x1 и принят сигнал y1, это означает, что первый сигнал (индекс 1) не исказился. Если передавался первый сигнал (x1), а принят второй сигнал (y2), это означает, что произошло искажение первого сигнала. Вероятности переходов указаны на рис. 13. Если канал симметричный, то вероятности переходов попарно равны.
Обозначим: p(y2/x1)= p(y1/x2)=pэ – вероятности искажения элемента сигнала, p(y1/x1)= p(y2/x2)=1-pэ – вероятности правильного приёма элемента сигнала.
В соответствии с формулами (5.1) и (5.3)
.
Если сигналы
x1
и x2
имеют
одинаковую длительность э,
то
.
Тогда пропускная способность канала
будет равна
.
(5.7)
В этой формуле maxH(y)=logk. Для двоичного канала (k=2) maxH(y)=1 и формула (5.4) примет вид
.
(5.8)
Остаётся определить условную энтропию H(y/x). Для двоичного источника имеем
Подставив это значение условной энтропии в (5.8), получим окончательно
.
(5.9)
На рис. 14 построен график зависимости пропускной способности двоичного канала от вероятности ошибки.
Для канала связи с k>2 пропускная способность определяется почти аналогичной формулой:
. (5.10)
В заключении
рассмотрим один пример. Пусть имеется
двоичный источник с производительностью
бит/c.
Рис. 14
На рис. 14 построен график зависимости пропускной способности двоичного канала от вероятности ошибки.
Для канала связи с k>2 пропускная способность определяется почти аналогичной формулой:
. (5.10)
В заключении
рассмотрим один пример. Пусть имеется
двоичный источник с производительностью
бит/c.
Если вероятность искажения pэ=0,01, то из этого следует, что из 1000 элементов сигнала, переданных за одну секунду, в среднем 990 элементов будут приняты без искажений и только 10 элементов будут искажены. Казалось бы, пропускная способность в этом случае будет составлять 990 бит в секунду. Однако вычисление по формуле (5.9) даёт нам величину, значительно меньшую (C=919 бит/с). В чём здесь дело? А дело в том, что мы получили бы C=990 бит/с, если бы точно знали, какие именно элементы сообщения искажены. Незнание этого факта (а это практически знать невозможно) приводит к тому, что 10 искажённых элементов настолько сильно снижают ценность принимаемого сообщения, что пропускная способность резко уменьшается.
Другой пример. Если pэ=0,5, то из 1000 переданных элементов 500 не будут искажены. Однако теперь уже пропускная способность будет составлять не 500 бит/с, как можно было бы предполагать, а формула (5.9) даст нам величину C=0. Действительно при pэ=0,5 сигнал по каналу связи фактически уже не проходит и канал связи просто эквивалентен генератору шума.
При pэ1 пропускная способность приближается к максимальной величине. Однако в этом случае сигналы на выходе системы связи необходимо инвертировать.