Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие по теории информации.doc / Пособие по теории информации.doc
Скачиваний:
415
Добавлен:
30.03.2015
Размер:
4.68 Mб
Скачать

4.4. Спектры сигналов

Сигнал – изменяющаяся физическая величина, обеспечивающая передачу информации по линии связи. Всё многообразие сигналов, используемых в информационных системах, можно разделить на 2 основные группы: детерминированные и случайные.

Детерминированный сигнал характеризуется тем, что в любые моменты времени их значения являются известными величинами. Сигнал, значения которого в любые моменты времени будут случайными величинами, называется случайным.

Это разделение является условным, так как детерминированных сигналов в точном их понимании в природе нет. На практике не может быть заранее точно предсказано значение сигнала в любые моменты времени, иначе сигнал не нес бы полезной информации. Кроме того, любой реальный сигнал случаен в силу воздействия на него многочисленных случайных факторов. Несмотря на это, исследование детерминированных сигналов важно по двум причинам:

  • математический аппарат, используемый для анализа детерминированных сигналов, гораздо проще аппарата анализа случайных сигналов;

  • выводы, полученные в результате исследований детерминированных сигналов, могут быть во многих случаях использованы для анализа случайных сигналов.

В зависимости от методов анализа информационных систем применяются те или иные способы представления сигналов. К основным относятся:

1) представление сигнала в виде некоторой функции времени x(t);

2) представление сигнала в операторной форме x(p);

3) представление сигнала в виде некоторой функции частоты.

В частотном виде могут представляться как периодические, так и непериодические детерминированные сигналы.

Необходимо заметить, что в реальных условиях периодические сигналы не существуют, т.к. идеальный периодический сигнал бесконечен во времени, в то время как всякий реальный сигнал имеет начало и конец. Однако во многих случаях конечностью времени действия сигнала можно пренебречь и для его анализа допустимо использовать аппарат, пригодный для идеальных периодических сигналов.

Функция x(t) называется периодической, если при некотором постоянном Т выполняется равенство:

x(t)=x(t+nT),

где Т – период функции, n – любое целое (положительное или отрицательное) число, а аргумент t принимает значение из области определения этой функции.

Периодическая функция x(t) с периодом Т обладает следующим свойством: интеграл от этой функции, взятый на интервале длиной Т, не изменяется при изменении пределов интегрирования при условии, что длина интервала интегрирования остается равной Т.

В общем случае сигнал представляет собой сложное колебание, поэтому возникает необходимость представить сложную функцию x(t), определяющую сигнал через простые функции.

Для представления сигналов в частотной области широко используют два частных случая разложения функции в ортогональные ряды: тригонометрическая форма разложения и комплексная.

Рассмотрим их.

    1. 4.5. Тригонометрическая форма

Любой периодический сигнал x(t), удовлетворяющий условию Дирихле (x(t) – ограниченая, кусочно-непрерывная, имеет на протяжении периода конечное число экстремумов), может быть представлен в виде ряда Фурье по тригонометрическим функциям:

(4.1)

Это выражение указывает на то, что периодическая функция x(t), имеющая период Т может быть разложена по sin и cos углов, кратных углу .

Если период функции x(t) равен Т, то основная круговая частота будет , тогда в формуле разложенияx(t) значения коэффициентов a0, ak, bk определяется формулами:

k= 1, 2, 3.

Зная коэффициенты ak и bk , можно определить значения амплитуды и начальной фазы  k-й гармоники.

(4.2)

(4.3)

Для практического анализа частотных свойств применяется формула (4.4), так как показывает, какой частоте сигнала соответствует определенная амплитуда

(4.4),

где - постоянная составляющая функцииx(t); k-я гармоническая составляющая; - амплитуда, частота и начальная фазаk-й гармонической составляющей; - частота основной гармоники; Т- период колебаний.