
- •О.Т.Данилова Теория информации
- •Введение
- •Глава 1. Основные понятия теории информации
- •1.1. Свойства информации
- •1.2. Этапы обращения информации
- •1.3. Определение системы передачи информации. Каналы связи.
- •1.4. Алфавит сообщения
- •1.5. Источник информации
- •Глава 2. Количество информации
- •2.1. Объемный подход к измерению информации
- •2.2. Количественная мера информации р.Хартли
- •2.3. Мера информации к. Шеннона
- •2.4. Условная собственная информация. Взаимная информация
- •1 (Бит), где m – мощность алфавита.
- •Глава 3. Энтропия дискретной последовательности. Энтропия непрерывной случайной величины
- •3.1. Частная энтропия
- •Прологарифмировав последнее равенство, получим
- •3.2. Энропия типичных и нетипичных комбинаций
- •3.3. Условная энтропия
- •3.4. Энтропия объединения ансамблей
- •3.5. Канальные матрицы
- •3.6. Количество информации при неполной достоверности и статистической зависимости сообщений
- •3.7. Избыточность источника
- •3.8. Энтропия непрерывной случайной величины
- •3.9. Количество информации для непрерывных систем
- •3.10. Принцип экстремума энтропии и экстремальные распределения
- •Подставим (3.7) в (3.4):
- •3.11. Эпсилон энтропия
- •Глава 4. Общие сведения из теории сигналов
- •4.1. Классификация сигналов и систем
- •Характеристики сигналов передаваемых по каналу
- •4.3. Модуляция сигналов. Виды и характеристики носителей
- •4.4. Спектры сигналов
- •4.5. Тригонометрическая форма
- •4.6. Комплексная форма
- •4.7. Определение погрешности
- •Глава 5. Скорость передачи и пропускная способность канала связи
- •5.1. Скорость передачи информации в дискретной системе связи
- •5.2. Пропускная способность однородного симметричного канала связи
- •5.3. Пропускная способность непрерывного канала связи
- •5.4. Обмен мощности сигнала на ширину его спектра
- •5.5. Сравнение пропускной способности непрерывного и дискретного каналов связи.
- •5.6. Эффективность систем связи
- •Глава 6. Критерии описания реальных дискретных каналов
- •6.1. Описание источника ошибок на основе цепей Маркова
- •6.2. Описание источника ошибок на основе процессов восстановления
- •6.3. Описание источника ошибок на основе процессов накопления
- •6.4. Модель Гилберта
- •6.5. Модель Эллиота-Гилберта. Модель Элиота
- •6.6. Модель Беннета-Фройлиха
- •6.7. Модель Попова - Турина
- •Глава 7. Кодирование информации
- •7.1. Статистическое кодирование дискретных сообщений
- •7.2. Статистическое кодирование кодовых слов
- •Средняя длина кодового слова
- •7.3. Кодирование информации для канала с помехами
- •7.3. Разновидности помехоустойчивых кодов
- •7.4 Общие принципы использования избыточности
- •7.5. Связь корректирующей способности кода с кодовым расстоянием
- •7.6. Понятие качества корректирующего кода
- •7.7. Линейные коды
- •7.7. Математическое введение к линейным кодам
- •7.8. Линейный код как пространство линейного векторного пространства
- •7.9. Построение двоичного группового кода
- •7.10. Составление таблицы опознавателей
- •7.11. Определение проверочных равенств
- •7.12. Мажоритарное декодирование групповых кодов
- •7.13. Матричное представление линейных кодов
- •7.14. Построение циклических кодов
- •Математическое введение к циклическим кодам
- •7.17. Обнаружение одиночных ошибок
- •Исправление одиночных или обнаружение двойных ошибок
- •7.18. Обнаружение ошибок кратности три и ниже
- •7.19. Обнаружение и исправление независимых ошибок произвольной кратности
- •7.20. Методы образования циклического кода
- •7.21. Матричная запись циклического кода
- •7.22. Укороченные циклические коды
- •Глава 8. Сжатие информации
- •8.1. Основные понятия
- •8.2. Методы сжатия без потерь
- •8.3. Методы сжатия с потерями
- •8.4. Сжатие графики
- •Прямое дкп
- •8.5. Сжатие звука
- •8.6. Сжатие видеоинформации
- •Вопросы для самопроверки
- •Список литературы
Характеристики сигналов передаваемых по каналу
Сигнал может быть охарактеризован различными параметрами. Таких параметров, вообще говоря, очень много, но для задач, которые приходится решать на практике, существенно лишь небольшое их число. Например, при выборе прибора для контроля технологического процесса может потребоваться знание дисперсии сигнала; если сигнал используется для управления, существенным является его мощность и так далее. Рассматривают три основных параметра сигнала, существенных для передачи информации по каналу. Первый важный параметр- это время передачи сигнала Tx . Второй характеристикой, которую приходится учитывать, является мощность Px сигнала, передаваемого по каналу с определенным уровнем помех Pz . Чем больше значение Px по сравнению с Pz, тем меньше вероятность ошибочного приема. Таким образом, представляет интерес отношение Px/Pz . Удобно пользоваться логарифмом этого отношения, называемым превышением сигнала над помехой:
Третьим
важным параметром является спектр
частотFx
. Эти три
параметра позволяют представить любой
сигнал в трехмерном пространстве с
координатами L,
T,
F
в виде параллелепипеда с объемом Tx
Fx
Lx
. Это
произведение носит название объема
сигнала и обозначается через Vx
4.3. Модуляция сигналов. Виды и характеристики носителей
Модуляцией в общем случае называется изменение по заданному закону параметров какого либо регулярного физического процесса. Например, для создания изображения в кинескопе телевизора ток луча изменяется с помощью специального электрода – модулятора.
Процесс модуляции требует участия, по крайней мере, двух величин. Одна из них содержит всю передаваемую информацию и называется модулирующим сигналом, вторая представляет собой высокочастотное несущее колебание, которое модулируется посредством изменения одного или нескольких параметров. В подавляющем большинстве случаев в качестве используется синусоидальное колебание, имеющее три параметра – амплитуду, частоту и фазу. В зависимости от изменяемого параметра различают три основных вида модуляции – амплитудную, частотную и фазовую.
В качестве несущего колебания могут использоваться также различные незатухающие функции, последовательности импульсов и даже шумы. Для последовательности импульсов параметрами модуляции могут быть амплитуда импульсов, длительность, частота следования. Например, в импульсных источниках питания и низкочастотных усилителях мощности для повышения КПД применяется широтно-импульсная модуляция – ШИМ.
Если обозначить параметры носителя через a1 , a2 , …, an ,то носитель как функция времени может быть представлен в виде:
UН =g(a1 , …, an ,t).
Модулированный импульс (сигнал) можно описать в виде:
Ux =g[a1 , …, ai +ai (t), …,an ,t],
где ai (t)- переменная составляющая параметра носителя, несущая информацию, или модулирующая функция. Последняя обычно связана с информационной (управляющей) функцией x линейной зависимостью:
ai =K·x,
где K – коэффициент пропорциональности.
Первый тип носителя UН (t) – постоянное состояние, например, постоянное напряжение имеет только один информационный параметр; это в данном случае – значение напряжения, причем модуляция сводится к такому изменению напряжения, чтобы оно в определенном масштабе представило передаваемые данные. При этом может изменяться и полярность напряжения.
Второй тип носителя – колебания, например переменное напряжение содержит три таких параметра: амплитуду U, фазу φ, частоту ω (или период T=2π/ω).
Третий тип носителя – последовательность импульсов – предоставляет собой еще большие возможности. Здесь параметрами модуляции могут быть: амплитуда импульсов U, фаза импульсов φ, частота импульсов f, длительность импульсов или пауз τ, число импульсов n и комбинация импульсов и пауз, определяющая код k. В последнем случае имеет место так называемая кодово-импульсная модуляция.