
- •О.Т.Данилова Теория информации
- •Введение
- •Глава 1. Основные понятия теории информации
- •1.1. Свойства информации
- •1.2. Этапы обращения информации
- •1.3. Определение системы передачи информации. Каналы связи.
- •1.4. Алфавит сообщения
- •1.5. Источник информации
- •Глава 2. Количество информации
- •2.1. Объемный подход к измерению информации
- •2.2. Количественная мера информации р.Хартли
- •2.3. Мера информации к. Шеннона
- •2.4. Условная собственная информация. Взаимная информация
- •1 (Бит), где m – мощность алфавита.
- •Глава 3. Энтропия дискретной последовательности. Энтропия непрерывной случайной величины
- •3.1. Частная энтропия
- •Прологарифмировав последнее равенство, получим
- •3.2. Энропия типичных и нетипичных комбинаций
- •3.3. Условная энтропия
- •3.4. Энтропия объединения ансамблей
- •3.5. Канальные матрицы
- •3.6. Количество информации при неполной достоверности и статистической зависимости сообщений
- •3.7. Избыточность источника
- •3.8. Энтропия непрерывной случайной величины
- •3.9. Количество информации для непрерывных систем
- •3.10. Принцип экстремума энтропии и экстремальные распределения
- •Подставим (3.7) в (3.4):
- •3.11. Эпсилон энтропия
- •Глава 4. Общие сведения из теории сигналов
- •4.1. Классификация сигналов и систем
- •Характеристики сигналов передаваемых по каналу
- •4.3. Модуляция сигналов. Виды и характеристики носителей
- •4.4. Спектры сигналов
- •4.5. Тригонометрическая форма
- •4.6. Комплексная форма
- •4.7. Определение погрешности
- •Глава 5. Скорость передачи и пропускная способность канала связи
- •5.1. Скорость передачи информации в дискретной системе связи
- •5.2. Пропускная способность однородного симметричного канала связи
- •5.3. Пропускная способность непрерывного канала связи
- •5.4. Обмен мощности сигнала на ширину его спектра
- •5.5. Сравнение пропускной способности непрерывного и дискретного каналов связи.
- •5.6. Эффективность систем связи
- •Глава 6. Критерии описания реальных дискретных каналов
- •6.1. Описание источника ошибок на основе цепей Маркова
- •6.2. Описание источника ошибок на основе процессов восстановления
- •6.3. Описание источника ошибок на основе процессов накопления
- •6.4. Модель Гилберта
- •6.5. Модель Эллиота-Гилберта. Модель Элиота
- •6.6. Модель Беннета-Фройлиха
- •6.7. Модель Попова - Турина
- •Глава 7. Кодирование информации
- •7.1. Статистическое кодирование дискретных сообщений
- •7.2. Статистическое кодирование кодовых слов
- •Средняя длина кодового слова
- •7.3. Кодирование информации для канала с помехами
- •7.3. Разновидности помехоустойчивых кодов
- •7.4 Общие принципы использования избыточности
- •7.5. Связь корректирующей способности кода с кодовым расстоянием
- •7.6. Понятие качества корректирующего кода
- •7.7. Линейные коды
- •7.7. Математическое введение к линейным кодам
- •7.8. Линейный код как пространство линейного векторного пространства
- •7.9. Построение двоичного группового кода
- •7.10. Составление таблицы опознавателей
- •7.11. Определение проверочных равенств
- •7.12. Мажоритарное декодирование групповых кодов
- •7.13. Матричное представление линейных кодов
- •7.14. Построение циклических кодов
- •Математическое введение к циклическим кодам
- •7.17. Обнаружение одиночных ошибок
- •Исправление одиночных или обнаружение двойных ошибок
- •7.18. Обнаружение ошибок кратности три и ниже
- •7.19. Обнаружение и исправление независимых ошибок произвольной кратности
- •7.20. Методы образования циклического кода
- •7.21. Матричная запись циклического кода
- •7.22. Укороченные циклические коды
- •Глава 8. Сжатие информации
- •8.1. Основные понятия
- •8.2. Методы сжатия без потерь
- •8.3. Методы сжатия с потерями
- •8.4. Сжатие графики
- •Прямое дкп
- •8.5. Сжатие звука
- •8.6. Сжатие видеоинформации
- •Вопросы для самопроверки
- •Список литературы
3.8. Энтропия непрерывной случайной величины
Выражение (3.1) можно обобщить и на случай непрерывных сообщений. При этом роль распределения вероятности по состояниям в непрерывном случае играет плотность вероятности w(x) (рис. 8).
Для перехода от
дискретных сообщений к непрерывным
сообщениям произведем квантование
значений случайной непрерывной величины
x
на счетное
число уровней с интервалом Δx.
Полученная, таким образом, дискретная
случайная величина x
характеризуется распределением, в
котором вероятность kго
состояния равна
.
Для дискретного случаяpk=w(x)Δx.
Чем меньше
Δx
тем более точной будет замена. Энтропия
эквивалентного сообщения равна
Т.
к.
и
,
то
.
Обозначим
,
тогда
(3.20)
Величину
называют приведенной или дифференциальной
энтропией.
Непрерывные случайные системы сохраняют свои свойства подобно свойствам дискретных систем. Рассмотрим эти свойства:
1. Энтропия объединения равна
,
где
,
,
2. При любых двух случайных переменных x и y
причем знак равенства будет тогда, когда x и y независимы.
3. Всякое сглаживание огибающей плотности вероятности w(x) приводит только к увеличению энтропии.
3.9. Количество информации для непрерывных систем
Взаимная информация определяется как разность двух энтропии:
Подставим под значения энтропии выражения для непрерывных случайных величин
Далее первый
интеграл умножим на выражение,
а во втором интеграле учтем, что
Тогда окончательно получим:
(3.21)
3.10. Принцип экстремума энтропии и экстремальные распределения
В ряде случаев возникает задача определения распределения вероятностей w(x) при заданных моментах случайных величин. Например, при выборе “наилучшего” распределения вероятностей при передаче сообщений или искусственно создаваемой помехи. Заданному ограничению всегда удовлетворяет бесконечное множество различных распределений вероятностей. Поэтому ставится задача выбора из данного множества некоторого наиболее подходящего распределения. В качестве критерия предлагается принцип экстремума энтропии. Данная задача решается как частная задача вариационного исчисления. При этом могут быть два случая. Первый случай при заданной дисперсии, второй при произвольной дисперсии.
Первый случай. Определим вид функции плотности вероятности распределения состояний элементов сообщений w(x), которая бы обеспечивала максимальную энтропию H(X) при заданной дисперсии.
При этом имеются дополнительные условия:
(3.22)
(3.23)
Для решения задачи составим уравнение Эйлера
,
(3.24)
где λ1
и λ2
неопределенные множители,
,
.
Продифференцируем уравнение (2.5) по w(x):
Приравнивая
производную нулю, получим
Т. к.
,
то
,
,
,
где
,
(3.25)
Для исключения
неизвестных λ1
и λ2
подставим
выражение (3.25) в (3.22).
Для решения
полученного выражения воспользуемся
табличным интегралом
.
Поэтому
и
.
Тогда (3.6) примет следующий вид:
(3.26)