
- •Механика, молекулярная физика и термодинамика Учебное пособие
- •Омск 2007
- •Введение
- •Разделы содержания теоретического курса, представленные в пособии
- •1. Физические основы механики
- •2. Молекулярная физика и термодинамика
- •I. Механика и элементы специальной теории относительности
- •1. Кинематика поступательного и вращательного движений материальной точки
- •1.1. Кинематические характеристики движения материальной точки
- •1.2. Тангенциальная и нормальная составляющие ускорения
- •1.3. Основная задача кинематики
- •1.4. Вращательное движение и его кинематические характеристики
- •2. Динамика поступательного и вращательного движений
- •Законы Ньютона Первый закон Ньютона: всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не выведет его из этого состояния.
- •Третий закон Ньютона: силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению:
- •2.2. Динамика вращательного движения твердого тела
- •3. Работа и механическая энергия
- •3.1. Работа и мощность при поступательном и вращательном движениях
- •3.2. Консервативные и неконсервативные силы
- •3.3. Кинетическая энергия при поступательном и вращательном движениях
- •3.4. Потенциальная энергия
- •4. Законы сохранения в механике
- •4.1. Закон сохранения механической энергии
- •4.2. Закон сохранения импульса. Центральный удар двух тел
- •4.3. Закон сохранения момента импульса
- •5.3. Релятивистские масса и импульс. Взаимосвязь массы и энергии
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Контрольное задание №1
- •II. Основы молекулярной физики и термодинамики
- •1. Молекулярно-кинетическая теория идеальных газов
- •1.1. Уравнение состояния
- •1.2. Уравнение состояния Ван-дер-Ваальса
- •1.3. Внутренняя энергия
- •1.4. Статистические распределения
- •1.4.1. Распределение Максвелла
- •1.4.2. Распределение Больцмана
- •1.5. Среднее число столкновений и средняя длина свободного пробега молекул
- •1.6. Явления переноса в газах
- •2. Основы термодинамики
- •2.1. Первое начало термодинамики
- •2.2. Работа газа при изменении его объема
- •2.3. Теплоемкость
- •2.4. Применение первого начала термодинамики к изопроцессам
- •2.5. Адиабатический процесс
- •2.6. Обратимые и необратимые процессы. Коэффициент полезного действия теплового двигателя
- •2.7. Второе начало термодинамики
- •2.8. Цикл Карно и теорема Карно
- •2.9. Термодинамическое неравенство Клаузиуса. Энтропия
- •2.10. Фазовое пространство. Микро- и макросостояния системы
- •2.11. Статистический вес (термодинамическая вероятность) макросостояния и его связь с энтропией
- •Примеры решения задач
- •Для расчета средней квадратичной скорости выражение (1) удобно преобразовать, умножив числитель и знаменатель на na:
- •На основании первого начала термодинамики
- •Так как точки в и с принадлежат адиабате вс, то
- •Задачи для самостоятельного решения
- •Контрольное задание №2
- •Библиографический список
- •Содержание
- •Разделы содержания теоретического курса, представленные в пособии...…4
I. Механика и элементы специальной теории относительности
1. Кинематика поступательного и вращательного движений материальной точки
Механическим движением тел называют изменение их положения (или положения их частей) в пространстве с течением времени. В основе классической механики лежат законы Ньютона.
Кинематика изучает механическое движение с геометрической точки зрения и не рассматривает причины, вызывающие это движение. В механике рассматривается движение таких объектов, как материальная точка и абсолютно твердое тело.
Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь.
Абсолютно твёрдым телом называется тело, деформацией которого в данных условиях можно пренебречь. Абсолютно твёрдое тело можно рассматривать как систему материальных точек, жестко связанных между собой.
1.1. Кинематические характеристики движения материальной точки
Описать движение материальной точки – значит знать ее положение относительно выбранной системы отсчета в любой момент времени. Системой отсчёта называется система координат, связанная с телом отсчёта и снабжённая синхронизированными часами. Наиболее часто используется прямоугольная декартова система координат (рис. 1).
Рис.
1 |
Положение
материальной точки характеризуется
радиусом-вектором
Движение материальной точки задано, если известна зависимость координат точки от времени, т.е. |
или
.
Данные уравнения являются кинематическими уравнениями движения материальной точки, или законом движения точки. В процессе движения конец радиуса-вектора, связанный с точкой, описывает в пространстве кривую, называемую траекторией движения материальной точки. В зависимости от формы траектории различают прямолинейное и криволинейное движения.
Перемещением материальной точки называют вектор, проведённый из начальной точки в конечную точку траектории (рис. 1):
.
Вектор
может быть выражен через приращения
координат и орты соответствующих осей
(единичные векторы, направленные по
осям):
.
Модуль вектора перемещения можно определить следующим образом:
.
Путь материальной точки S12 это длина траектории.
Скорость векторная физическая величина, характеризующая быстроту изменения положения тела в пространстве, равная перемещению тела за единицу времени. Различают среднюю и мгновенную скорости.
средняя
скорость;
мгновенная
скорость;
среднее
значение модуля скорости.
Вектор
средней скорости направлен так же, как
и вектор перемещения
.
Вектор мгновенной скорости направлен
по касательной к траектории движения
так же, как вектор элементарного
перемещения:
.
Так как
,
где dS
элементарный путь, то модуль мгновенной
скорости равен производной пути по
времени:
.
В декартовой системе координат скорость можно представить через её проекции на оси:
Модуль скорости может быть найден по следующей формуле:
.
При
рассмотрении движения тела относительно
двух различных инерциальных систем
отсчета используют классический закон
сложения скоростей: скорость тела
относительно неподвижной системы
отсчета
равна векторной сумме скорости тела
относительно движущейся системы
и скорости самой движущейся системы
относительно неподвижной
:
.
Ускорение векторная физическая величина, характеризующая быстроту изменения скорости с течением времени, равная приращению скорости за единицу времени. Различают среднее и мгновенное ускорения.
среднее
ускорение,
мгновенное
ускорение.
Вектор ускорения может быть представлен через его проекции на координатные оси:
,
где
,
,
.
Модуль ускорения можно определить следующим образом:
.