- •2. Дальнейшее развитие теории. Принцип соответствия (1916—1923)[править | править исходный текст]
- •3. Исходные представления квантовой механики.
- •7. Основы химической термодинамики. Термохимия
- •8. Термохимические уравнения[править | править исходный текст]
- •Закон Гесса[править | править исходный текст]
- •Типы катализа
- •Гомогенный катализ[править | править исходный текст]
- •Гетерогенный катализ[править | править исходный текст]
- •11. Энергия Гиббса и направление протекания реакции[править | править исходный текст]
- •Содержание
- •Смещение химического равновесия
- •Виды ковалентной связи
- •18. Межмолекулярная и внутримолекулярная водородная связь
- •Межмолекулярная и внутримолекулярная водородная связь
- •20. Σ-связь и π-связь
- •25. Законы - идеальный раствор
- •29. Диссоциация воды
- •PH воды
- •32. Степень окисления
- •Расчет степени окисления
- •Реакции без и с изменением степени окисления
- •A Реакции, в которых не изменяется степень окисления элементов:
- •B Реакции, в которых происходит изменение степеней окисления атомов элементов, входящих в состав реагирующих соединений:
- •Окисление, восстановление
- •Окислительно-восстановительные свойства вещества и степени окисления входящих в него атомов
- •Классификация окислительно-восстановительных реакций Межмолекулярные окислительно-восстановительные реакции
- •Внутримолекулярные окислительно- восстановительные реакции
- •35. Электрохимические системы
- •Стандартные потенциалы металлов
- •40. Методы борьбы с коррозионными процессами
- •Лакокрасочные покрытия
- •Электрохимическая защита
- •Конструкционные методы
- •Предложения компании «БораПак» в Самаре
8. Термохимические уравнения[править | править исходный текст]
Термохимические уравнения реакций - это уравнения, в которых около символов химических соединений указываются агрегатные состояния этих соединений или кристаллографическая модификация и в правой части уравнения указываются численные значения тепловых эффектов
Важнейшей величиной в термохимии является стандартная теплота образования (стандартная энтальпия образования). Стандартной теплотой (энтальпией) образования сложного вещества называется тепловой эффект (изменение стандартной энтальпии) реакции образования одного моля этого вещества из простых веществ в стандартном состоянии. Стандартная энтальпия образования простых веществ в этом случае принята равной нулю.
В термохимических уравнениях необходимо указывать агрегатные состояния веществ с помощью буквенных индексов, а тепловой эффект реакции (ΔН) записывать отдельно, через запятую. Например, термохимическое уравнение
4NH3(г) + 3O2(г) → 2N2(г) + 6H2O(ж), ΔН=-1531 кДж
показывает, что данная химическая реакция сопровождается выделением 1531 кДж теплоты, при давлении 101 кПа, и относится к тому числу молей каждого из веществ, которое соответствует стехиометрическому коэффициенту в уравнении реакции.
В термохимии также используют уравнения, в которых тепловой эффект относят к одному молю образовавшегося вещества, применяя в случае необходимости дробные коэффициенты.
Закон Гесса[править | править исходный текст]
Основная статья: Закон Гесса
В основе термохимических расчётов лежит закон Гесса: Тепловой эффект (∆Н) химической реакции (при постоянных Р и Т) зависит от природы и физического состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.
Следствия из закона Гесса:
Тепловые эффекты прямой и обратной реакций равны по величине и противоположны по знаку.
Тепловой эффект химической реакции (∆Н) равен разности между суммой энтальпий образования продуктов реакции и суммой энтальпий образования исходных веществ, взятых с учётом коэффициентов в уравнении реакции (то есть помноженные на них).
Закон Гесса может быть записан в виде следующего математического выражения:
.
С помощью закона Гесса можно рассчитать энтальпии образования веществ и тепловые эффекты реакций, которые невозможно измерить экспериментально.
9. Ката́лиз (греч. κατάλυσις восходит к καταλύειν — разрушение) — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.[1]
Термин «катализ» был введён в 1835 году шведским учёным Йёнсом Якобом Берцелиусом.
Явление катализа распространено в природе (большинство процессов, происходящих в живых организмах, являются каталитическими) и широко используется в технике (в нефтепереработке и нефтехимии, в производстве серной кислоты, аммиака, азотной кислоты и др.). Большая часть всех промышленных реакций — каталитические.
Случай, когда катализатором является один из продуктов реакции или ее исходных веществ, называют автокатализом.
