- •2. Дальнейшее развитие теории. Принцип соответствия (1916—1923)[править | править исходный текст]
- •3. Исходные представления квантовой механики.
- •7. Основы химической термодинамики. Термохимия
- •8. Термохимические уравнения[править | править исходный текст]
- •Закон Гесса[править | править исходный текст]
- •Типы катализа
- •Гомогенный катализ[править | править исходный текст]
- •Гетерогенный катализ[править | править исходный текст]
- •11. Энергия Гиббса и направление протекания реакции[править | править исходный текст]
- •Содержание
- •Смещение химического равновесия
- •Виды ковалентной связи
- •18. Межмолекулярная и внутримолекулярная водородная связь
- •Межмолекулярная и внутримолекулярная водородная связь
- •20. Σ-связь и π-связь
- •25. Законы - идеальный раствор
- •29. Диссоциация воды
- •PH воды
- •32. Степень окисления
- •Расчет степени окисления
- •Реакции без и с изменением степени окисления
- •A Реакции, в которых не изменяется степень окисления элементов:
- •B Реакции, в которых происходит изменение степеней окисления атомов элементов, входящих в состав реагирующих соединений:
- •Окисление, восстановление
- •Окислительно-восстановительные свойства вещества и степени окисления входящих в него атомов
- •Классификация окислительно-восстановительных реакций Межмолекулярные окислительно-восстановительные реакции
- •Внутримолекулярные окислительно- восстановительные реакции
- •35. Электрохимические системы
- •Стандартные потенциалы металлов
- •40. Методы борьбы с коррозионными процессами
- •Лакокрасочные покрытия
- •Электрохимическая защита
- •Конструкционные методы
- •Предложения компании «БораПак» в Самаре
29. Диссоциация воды
Чистая вода, хоть и плохо (по сравнению с растворами электролитов), но может проводить электрический ток. Это вызвано способностью молекулы воды распадаться (диссоциировать) на два иона которые и являются проводниками электрического тока в чистой воде (ниже под диссоциацией подразумевается электролитическая диссоциация - распад на ионы):
H2O ↔ H+ + OH-
Примерно на 556 000 000 не диссоциированных молекул воды диссоциирует только 1 молекула, однако это 60 000 000 000 диссоциированных молекул в 1мм3. Диссоциация обратима, то есть ионы H+ и OH- могут снова образовать молекулу воды. В итоге наступает динамическое равновесие при котором количество распавшихся молекул равно количеству образовавшихся из H+ и OH- ионов. Другими словами скорости обоих процессов будут равны. Для нашего случая, уравнение скорости химической реакции можно написать так:
υ1 = κ1 • [H2O] (для диссоциации воды)
υ2 = κ2 • [H+] • [HO-] (для обратного процесса)
где υ - скорость реакции; κ - константа скорости реакции (зависящая от природы реагирующих веществ и температуры); [H2O], [H+] и [HO-] - концентрации (моль/л).
В состоянии равновесия υ1 = υ2, следовательно:
κ1 • [H2O] = κ2 • [H+] • [HO-]
Проведем нехитрые математические действия и получим:
κ1/κ2 = [H+] • [HO-]/[H2O]
κ1/κ2 = K
K - константа равновесия, а в нашем случаи константа диссоциации, которая зависит от температуры и природы веществ, и не зависящая от концентраций (также как κ1 и κ2). K для воды 1,8•10-16 при 25 °C (справочная величина).
Вследствие очень малого количества продиссоциированных молекул концентрацию[H2O] можно принять равной общей концентрации воды, а общую концентрацию воды в разбавленных растворах как величину постоянную:
[H2O]=1000(г/л)/18(г/моль)=55,6 моль/л.
Заменяя κ1/κ2 на K и используя величину [H2O], определяем чему равно произведение концентраций [H+] и [HO-], которое называется - ионное произведение воды:
K = [H+] • [HO-]/55,6 моль/л 1,8•10-16 • 55,6 моль/л = [H+] • [HO-] 10-14 = [H+] • [HO-]
Так как, при определенной температуре, величины используемые в расчете ионного произведения воды (K, [H2O]) постоянны, значение ионного произведения воды [H+] • [HO-] так же постоянно. А поскольку при диссоциации молекулы воды образуется одинаковое количество ионов [H+] и [HO-], получается что для чистой воды концентрации [H+] и [HO-] будут равны 10-7 моль/л. Из постоянства ионного произведения воды следует, что если количество ионов H+ становится больше, то количество ионов HO- становится меньше. Например, если к чистой воде добавить сильную кислоту HCl, она как сильный электролит вся продиссоциирует на H+ и Cl-, в результате концентрация ионов H+ резко увеличится, и это приведет к увеличению скорости процесса противоположного диссоциации, так как она зависит от концентраций ионов H+ и OH-:
υ2 = κ2 • [H+] • [HO-]
В ходе ускорившегося процесса противоположного диссоциации, концентрация ионов HO- уменьшится до величины соответствующей новому равновесию, при котором их будет так мало, что скорости диссоциации воды и обратного процесса снова будут равны. Если концентрация получившегося раствора HCl равна 0,1моль/л, равновесная концентрация [HO-] будет равна:
[HO-] = 10-14/0,1 = 10-13 моль/л
При добавлении сильного основания NaOH сдвиг будет в сторону уменьшения концентрации H+.
