
- •1.Кинематика материальной точки. Системы отсчета. Траектория, перемещение, путь, средняя путевая и средняя скорость по перемещению.
- •2. Мгновенная скорость. Путь, как интеграл.
- •3. Равномерное и равнопеременное движения. Координатное и графическое представления.
- •4. Криволинейное движение. Нормальное и тангенциальное ускорение.
- •5. Движение точки по окружности. Угловые перемещение, скорость, ускорение. Связь между линейными и угловыми характеристиками.
- •6. Динамика материальной точки. Сила и движение. Инерциальные системы отсчета и первый закон Ньютона.
- •7. Фундаментальные взаимодействия. Силы различной природы (упругие, гравитационные, трения), второй закон Ньютона. Третий закон Ньютона.
- •8. Закон всемирного тяготения. Сила тяжести и вес тела.
- •9. Силы сухого и вязкого трения. Движение по наклонной плоскости.
- •10.Упругое тело. Силы и деформации при растяжении. Относительное удлинение. Напряжение. Закон Гука.
- •11. Импульс системы материальных точек. Уравнение движения центра масс. Импульс и его связь с силой. Столкновения и импульс силы. Закон сохранения импульса.
- •12. Работа, совершаемая постоянной и переменной силой. Мощность.
- •13. Кинетическая энергия и связь энергии и работы.
- •14. Потенциальные и непотенциальные поля. Консервативные и диссипативные силы. Потенциальная энергия.
- •15. Закон всемирного тяготения. Поле тяготения, его напряженность и потенциальная энергия гравитационного взаимодействия.
- •16. Работа по перемещению тела в поле тяготения.
- •17. Механическая энергия и её сохранение.
- •18. Соударение тел. Абсолютно упругий и неупругий удары.
- •19. Динамика вращательного движения. Момент силы и момент инерции. Основной закон механики вращательного движения абсолютно твердого тела.
- •20. Вычисление момента инерции. Примеры. Теорема Штейнера.
- •21. Момент импульса и его сохранение. Гироскопические явления.
- •22. Кинетическая энергия вращающегося твердого тела.
- •24. Математический маятник.
- •25. Физический маятник. Приведенная длина. Свойство оборотности.
- •26. Энергия колебательного движения.
- •27. Векторная диаграмма. Сложение параллельных колебаний одинаковой частоты.
- •(2) (3)
- •28. Биения
- •29. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •30. Статистическая физика (мкт) и термодинамика. Состояние термодинамической системы. Равновесное, неравновесное состояния. Термодинамические параметры. Процесс. Основные положения мкт.
- •31. Температура в термодинамике. Термометры. Температурные шкалы. Идеальный газ. Уравнение состояния идеального газа.
- •32. Давление газа на стенку сосуда. Закон идеального газа в мкт.
- •33. Температура в мкт(31 вопрос). Средняя энергия молекул. Среднеквадратичная скорость молекул.
- •34. Число степеней свободы механической системы. Число степеней свободы молекул. Закон равнораспределения энергии по степеням свободы молекулы.
- •35. Работа, совершаемая газом при изменениях его объема. Графическое представление работы. Работа в изотермическом процессе.
- •37.Первое начало тд. Применение первого начала к различным изопроцессам.
- •38. Теплоемкость идеального газа. Уравнение Майера.
- •39. Уравнение адиабаты идеального газа.
- •40. Политропические процессы.
- •41. Второе начало тд. Тепловые двигатели и холодильники. Формулировка Клаузиуса.
- •42. Двигатель Карно. Кпд двигателя Карно. Теорема Карно.
- •43. Энтропия.
- •44. Энтропия и второе начало тд.
- •45. Энтропия как количественная мера беспорядка в системе. Статистическая интерпретация энтропии. Микро и микросостояния системы.
- •46. Распределение молекул газа по скоростям. Распределение Максвелла.
- •47. Барометрическая формула. Распределение Больцмана.
- •48. Свободные затухающие колебания. Характеристики затухания: коэффициент затухания, время, релаксация, декремент затухания, добротность колебательной системы.
- •49. Электрический заряд. Закон Кулона. Электростатическое поле (эсп). Напряженность эсп. Принцип суперпозиции. Силовые линии эсп.
18. Соударение тел. Абсолютно упругий и неупругий удары.
Абсолютно неупругим ударом, называется столкновение двух тел, в результате которого они соединяются вместе и движутся дальше как одно тело.
Сталкивающиеся тела деформируются, возникают упругие силы и т.д. Однако если удар неупругий то, в конце концов все эти процессы прекращаются, и в дальнейшем оба тела, соединившись вместе, движутся как единое твёрдое тело.
Рассмотрим абс. неупругий удар на примере столкновения двух шаров. Пусть они движутся вдоль прямой, соединяющей их центры, со скоростями v1 и v2. В этом случае говорят что удар является центральным. Обозначим за V общую скорость шаров после соударения. Закон сохр. Импульса даёт:
m1v1+m2v2=(m1+m2)V V=(m1v1+m2v2)/(m1+m2)
Кин. энергии системы до удара и после: K1=1/2(m1v12+m2v22) K2=1/2(m1+m2)V
при столкновении двух абсолютно неупругих шаров происходит потеря кин. энергии макроскопического движения, равная половине произведения приведённой массы на квадрат относительной скорости.
Абсолютно упругим ударом называется столкновение тел, в результате которого их внутренние энергии не меняются. Пример: Столкновение бильярдных шаров из слоновой кости, при столкновениях атомных, ядерных частиц. Рассмотрим центральный удар двух шаров, движущ-ся навстречу друг другу:
(m1v12)/2+(m2 v22)/2=(m1u12)/2+(m2 u22)/2
и:
m1v1+m2v2=m1u1+m2u2
u1=[(m1-m2)v1+2m2v2]/(m1 +m2)
u2=[(m2-m1)v2+2m1v1]/(m1+m2)
При столкновении двух одинаковых абсолютно упругих шаров они просто обмениваются скоростями.
19. Динамика вращательного движения. Момент силы и момент инерции. Основной закон механики вращательного движения абсолютно твердого тела.
Рассмотрим
движение твердого тела, имеющею ось
вращения под
действием произвольно направленной
силы
,
приложенной к телу в некоторой точке А
, которую можно разложить на две
составляющие: вертикальную и горизонтальную
(рис.5.1). Вертикальная составляющая может
вызывать перемещение тела в направлении
оси вращения поэтому при рассмотрении
вращательного движения ее можно
исключить.Горизонтальная составляющая
,
если она не пересекается с осью
вызывает
вращение тела. Действие этой силы зависит
от ее числового значения и расстояния
линии действия от оси вращения.
Пусть на тело, в плоскости перпендикулярной
оси вращения действует
сила
(рис.5.2).
Разложим эту силу на две составляющие:
и
Сила пересекает
ось вращения и, следовательно, не влияет
на вращение тела. Под действием
составляющей
тело
будет совершать вращательное движение
вокруг оси
.
Расстояние
от
оси вращения до линии вдоль которой
действует сила
называется
плечом силы
.
Моментом силы относительно точки О
называется произведение модуля силы
на
плечо
С учетом, что
момент силы
.
С точки зрения векторной алгебры это
выражение представляет векторное
произведение радиуса-вектора ,
проведенного в точку приложения силы
на
эту силу. Таким образом, момент силы
относительно точки О является векторной
величиной и равен
|
(5.1) |
Вектор момента силы направлен
перпендикулярно к плоскости, проведенной
через векторы и
,
и образует с ними правую тройку векторов
(при наблюдении из вершины вектора М
видно, что вращение по кратчайшему
расстоянию от
к
происходит
против часовой стрелки).
Согласно второму закону
Ньютона, для тангенциальной
составляющейсилы ,
действующей на материальную точку
массой m, и ускорения
можем записать
С учетом, что
и
имеем
Домножимлевую и правую
части на и
получим
|
(5.2) |
или
Произведение массы
материальной точки тела
на квадрат ее расстояния
до
оси вращения называется моментом инерции
материальной точки относительно оси
вращения: