
- •1.Кинематика материальной точки. Системы отсчета. Траектория, перемещение, путь, средняя путевая и средняя скорость по перемещению.
- •2. Мгновенная скорость. Путь, как интеграл.
- •3. Равномерное и равнопеременное движения. Координатное и графическое представления.
- •4. Криволинейное движение. Нормальное и тангенциальное ускорение.
- •5. Движение точки по окружности. Угловые перемещение, скорость, ускорение. Связь между линейными и угловыми характеристиками.
- •6. Динамика материальной точки. Сила и движение. Инерциальные системы отсчета и первый закон Ньютона.
- •7. Фундаментальные взаимодействия. Силы различной природы (упругие, гравитационные, трения), второй закон Ньютона. Третий закон Ньютона.
- •8. Закон всемирного тяготения. Сила тяжести и вес тела.
- •9. Силы сухого и вязкого трения. Движение по наклонной плоскости.
- •10.Упругое тело. Силы и деформации при растяжении. Относительное удлинение. Напряжение. Закон Гука.
- •11. Импульс системы материальных точек. Уравнение движения центра масс. Импульс и его связь с силой. Столкновения и импульс силы. Закон сохранения импульса.
- •12. Работа, совершаемая постоянной и переменной силой. Мощность.
- •13. Кинетическая энергия и связь энергии и работы.
- •14. Потенциальные и непотенциальные поля. Консервативные и диссипативные силы. Потенциальная энергия.
- •15. Закон всемирного тяготения. Поле тяготения, его напряженность и потенциальная энергия гравитационного взаимодействия.
- •16. Работа по перемещению тела в поле тяготения.
- •17. Механическая энергия и её сохранение.
- •18. Соударение тел. Абсолютно упругий и неупругий удары.
- •19. Динамика вращательного движения. Момент силы и момент инерции. Основной закон механики вращательного движения абсолютно твердого тела.
- •20. Вычисление момента инерции. Примеры. Теорема Штейнера.
- •21. Момент импульса и его сохранение. Гироскопические явления.
- •22. Кинетическая энергия вращающегося твердого тела.
- •24. Математический маятник.
- •25. Физический маятник. Приведенная длина. Свойство оборотности.
- •26. Энергия колебательного движения.
- •27. Векторная диаграмма. Сложение параллельных колебаний одинаковой частоты.
- •(2) (3)
- •28. Биения
- •29. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •30. Статистическая физика (мкт) и термодинамика. Состояние термодинамической системы. Равновесное, неравновесное состояния. Термодинамические параметры. Процесс. Основные положения мкт.
- •31. Температура в термодинамике. Термометры. Температурные шкалы. Идеальный газ. Уравнение состояния идеального газа.
- •32. Давление газа на стенку сосуда. Закон идеального газа в мкт.
- •33. Температура в мкт(31 вопрос). Средняя энергия молекул. Среднеквадратичная скорость молекул.
- •34. Число степеней свободы механической системы. Число степеней свободы молекул. Закон равнораспределения энергии по степеням свободы молекулы.
- •35. Работа, совершаемая газом при изменениях его объема. Графическое представление работы. Работа в изотермическом процессе.
- •37.Первое начало тд. Применение первого начала к различным изопроцессам.
- •38. Теплоемкость идеального газа. Уравнение Майера.
- •39. Уравнение адиабаты идеального газа.
- •40. Политропические процессы.
- •41. Второе начало тд. Тепловые двигатели и холодильники. Формулировка Клаузиуса.
- •42. Двигатель Карно. Кпд двигателя Карно. Теорема Карно.
- •43. Энтропия.
- •44. Энтропия и второе начало тд.
- •45. Энтропия как количественная мера беспорядка в системе. Статистическая интерпретация энтропии. Микро и микросостояния системы.
- •46. Распределение молекул газа по скоростям. Распределение Максвелла.
- •47. Барометрическая формула. Распределение Больцмана.
- •48. Свободные затухающие колебания. Характеристики затухания: коэффициент затухания, время, релаксация, декремент затухания, добротность колебательной системы.
- •49. Электрический заряд. Закон Кулона. Электростатическое поле (эсп). Напряженность эсп. Принцип суперпозиции. Силовые линии эсп.
34. Число степеней свободы механической системы. Число степеней свободы молекул. Закон равнораспределения энергии по степеням свободы молекулы.
Число степеней свободы – это число независимых величин с помощью которых может быть задано положение системы. (1 атом =3 ст., 2 атома =5ст. 3 атома=6ст.)
Закон Больцмана о равномерном распределении энергии по степеням свободы молекул: для статической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная КТ/2 , а на каждую колебательную – КТ
средняя энергия приходящаяся на одну степень свободы:
У одноатомной молекулы i = 3, тогда для одноатомных молекул:
для двухатомных молекул:
Таким образом, на среднюю кинетическую энергию молекулы, имеющей i-степеней свободы, приходится:
35. Работа, совершаемая газом при изменениях его объема. Графическое представление работы. Работа в изотермическом процессе.
Для рассмотрения конкретных процессов найдем в общем виде внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим, например, газ, находящийся под поршнем в цилиндрическом сосуде (рис. 78). Если газ, расширяясь, передвигает поршень на бесконечно малое расстояние dl, то производит над ним работу
ΔA=Fdl=pSdl=pdV,
где S — площадь поршня, Sdl=dV— изменение объема системы. Таким образом,
ΔA=pdV. (52.1)
Полную работу A, совершаемую газом при изменении его объема от V1 до V2, найдем
интегрированием формулы (52.1):
Результат интегрирования определяется характером зависимости между давлением и объемом газа. Найденное для работы выражение (52.2) справедливо при любых изменениях объема твердых, жидких и газообразных тел.
Изотермический процесс (T=const). Изотермический процесс описывается законом Бой ля — Мариотта:
pV=const.
Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу, расположенную на диаграмме тем выше, чем выше температура, при которой происходил процесс. Найдем работу изотермического расширения газа:
Так как при T=const внутренняя энергия идеального газа не изменяется:
то из первого начала термодинамики (ΔQ =dU+ΔA) следует, что для изотермического процесса
ΔQ=ΔA,
т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:
Следовательно, для того чтобы при работе расширения температура не уменьшалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.
36.
Внутренняя энергия ТД системы как
функция состояния. Теплота в процессе
переноса энергии. Внутренняя
энергиятермодинамическая функция
состояния системы, ее энергия, определяемая
внутренним состоянием.Внутренняя
энергияскладывается в основном из
кинетической энергии движения частиц
(атомов, молекул, ионов, электронов) и
энергии взаимодействия между ними
(внутри- и межмолекулярной). Навнутреннюю
энергиювлияет изменение внутреннего
состояния системы под действием внешнего
поля; вовнутреннюю энергиювходит,
в частности, энергия, связанная с
поляризацией диэлектрика во внешнем
электрическом поле и намагничиванием
парамагнетика во внешнем магнитном
поле. Кинетическая энергия системы как
целого и потенциальная энергия,
обусловленная пространственным
расположением системы, во внутреннюю
энергию не включаются. В термодинамике
определяется лишь изменение внутренней
энергии в различных процессах. Поэтому
внутреннюю энергию задают с точностью
до некоторого постоянного слагаемого,
зависящего от энергии, принятой за нуль
отсчета. Внутренняя энергияUкак
функция состояния вводится первым
началом термодинамики, согласно которому
разность между теплотой Q, переданной
системе, и работойW, совершаемой
системой, зависит только от начального
и конечного состояний системы и не
зависит от пути перехода, т.е. представляет
изменение фуникции состояния ΔUгде
U1иU2- внутренняя
энергия системы в начальном и конечном
состояниях соответственно. Уравнение
(1) выражает закон сохранения энергии в
применении к термодинамическим процессам,
т.е. процессам, в которых происходит
передача теплоты. Для циклического
процесса, возвращающего систему в
начальное состояние, ΔU=0. В изохорных
процессах, т.е. процессах при постоянном
объеме, система не совершает работы за
счет расширения,W=0 и теплота,
переданная системе, равна приращению
внутренней энергии:Qv=ΔU.
Для адиабатических процессов, когдаQ=0, ΔU=-W.