
- •1.Кинематика материальной точки. Системы отсчета. Траектория, перемещение, путь, средняя путевая и средняя скорость по перемещению.
- •2. Мгновенная скорость. Путь, как интеграл.
- •3. Равномерное и равнопеременное движения. Координатное и графическое представления.
- •4. Криволинейное движение. Нормальное и тангенциальное ускорение.
- •5. Движение точки по окружности. Угловые перемещение, скорость, ускорение. Связь между линейными и угловыми характеристиками.
- •6. Динамика материальной точки. Сила и движение. Инерциальные системы отсчета и первый закон Ньютона.
- •7. Фундаментальные взаимодействия. Силы различной природы (упругие, гравитационные, трения), второй закон Ньютона. Третий закон Ньютона.
- •8. Закон всемирного тяготения. Сила тяжести и вес тела.
- •9. Силы сухого и вязкого трения. Движение по наклонной плоскости.
- •10.Упругое тело. Силы и деформации при растяжении. Относительное удлинение. Напряжение. Закон Гука.
- •11. Импульс системы материальных точек. Уравнение движения центра масс. Импульс и его связь с силой. Столкновения и импульс силы. Закон сохранения импульса.
- •12. Работа, совершаемая постоянной и переменной силой. Мощность.
- •13. Кинетическая энергия и связь энергии и работы.
- •14. Потенциальные и непотенциальные поля. Консервативные и диссипативные силы. Потенциальная энергия.
- •15. Закон всемирного тяготения. Поле тяготения, его напряженность и потенциальная энергия гравитационного взаимодействия.
- •16. Работа по перемещению тела в поле тяготения.
- •17. Механическая энергия и её сохранение.
- •18. Соударение тел. Абсолютно упругий и неупругий удары.
- •19. Динамика вращательного движения. Момент силы и момент инерции. Основной закон механики вращательного движения абсолютно твердого тела.
- •20. Вычисление момента инерции. Примеры. Теорема Штейнера.
- •21. Момент импульса и его сохранение. Гироскопические явления.
- •22. Кинетическая энергия вращающегося твердого тела.
- •24. Математический маятник.
- •25. Физический маятник. Приведенная длина. Свойство оборотности.
- •26. Энергия колебательного движения.
- •27. Векторная диаграмма. Сложение параллельных колебаний одинаковой частоты.
- •(2) (3)
- •28. Биения
- •29. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- •30. Статистическая физика (мкт) и термодинамика. Состояние термодинамической системы. Равновесное, неравновесное состояния. Термодинамические параметры. Процесс. Основные положения мкт.
- •31. Температура в термодинамике. Термометры. Температурные шкалы. Идеальный газ. Уравнение состояния идеального газа.
- •32. Давление газа на стенку сосуда. Закон идеального газа в мкт.
- •33. Температура в мкт(31 вопрос). Средняя энергия молекул. Среднеквадратичная скорость молекул.
- •34. Число степеней свободы механической системы. Число степеней свободы молекул. Закон равнораспределения энергии по степеням свободы молекулы.
- •35. Работа, совершаемая газом при изменениях его объема. Графическое представление работы. Работа в изотермическом процессе.
- •37.Первое начало тд. Применение первого начала к различным изопроцессам.
- •38. Теплоемкость идеального газа. Уравнение Майера.
- •39. Уравнение адиабаты идеального газа.
- •40. Политропические процессы.
- •41. Второе начало тд. Тепловые двигатели и холодильники. Формулировка Клаузиуса.
- •42. Двигатель Карно. Кпд двигателя Карно. Теорема Карно.
- •43. Энтропия.
- •44. Энтропия и второе начало тд.
- •45. Энтропия как количественная мера беспорядка в системе. Статистическая интерпретация энтропии. Микро и микросостояния системы.
- •46. Распределение молекул газа по скоростям. Распределение Максвелла.
- •47. Барометрическая формула. Распределение Больцмана.
- •48. Свободные затухающие колебания. Характеристики затухания: коэффициент затухания, время, релаксация, декремент затухания, добротность колебательной системы.
- •49. Электрический заряд. Закон Кулона. Электростатическое поле (эсп). Напряженность эсп. Принцип суперпозиции. Силовые линии эсп.
(2) (3)
Замена сложения функций сложением векторов, которая возможна при Представление гармонических колебаний с помощью векторов, значительно упрощает вычисления.
28. Биения
Биения — явление, возникающее при наложении двух гармонических колебаний близкой частоты и выражающееся в периодическом уменьшении и увеличении амплитуды суммарного сигнала. Частота изменения амплитуды суммарного сигнала равна разности частот двух исходных сигналов.
Биения возникают от того, что один из двух сигналов постоянно отстаёт от другого по фазе и в те моменты, когда колебания происходят синфазно, суммарный сигнал оказывается усилен, а в те моменты, когда два сигнала оказываются в противофазе, они взаимно гасят друг друга. Эти моменты периодически сменяют друг друга по мере того как нарастает отставание.
29. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
Фигуры Лиссажу — замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях. Впервые изучены французским учёным Ж. Лиссажу (J. Lissajous; 1822—80). Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний. В простейшем случае равенства обоих периодов фигуры представляют собой эллипсы, которые при разности фаз 0 или π вырождаются в отрезки прямых, а при разности фаз π/2 и равенстве амплитуд превращаются в окружность. Если периоды обоих колебаний неточно совпадают, то разность фаз всё время меняется, вследствие чего эллипс всё время деформируется. При существенно различных периодах фигуры Лиссажу не наблюдаются. Однако, если периоды относятся как целые числа, то через промежуток времени, равный наименьшему кратному обоих периодов, движущаяся точка снова возвращается в то же положение — получаются фигуры Лиссажу более сложной формы. Фигуры Лиссажу вписываются в прямоугольник, центр которого совпадает с началом координат, а стороны параллельны осям координат и расположены по обе стороны от них на расстояниях, равных амплитудам колебаний.
Сложение взаимно перпендикулярных колебаний.
Рассмотрим две взаимно перпендикулярные векторные величины x и y , изменяющиеся со временем с одинаковой частотой ω по гармоническому закону:
(1)
Где e x и e у — орты координатных осей x и y, А и B — амплитуды колебаний. Величинами x и у может быть, например, смещения материальной точки (частицы) из положения равновесия.
В случае колеблющейся частицы величины x и y можно представить в виде:
,
(2)
Они определяют координаты частицы на плоскости xy.
Выражения (2) представляют собой заданное в параметрической форме уравнение траектории, по которой будет двигаться частица. Вид траектории зависит от разности фаз обоих колебаний.
Исключив
из уравнений (2) параметр t,
получим уравнение траектории в обычном
виде. Из
первого уравнения: (3).
Соответственно
(4)
По формуле для косинуса суммы:
,
тогда
Преобразуем это уравнение
(5)
Получили уравнение эллипса, оси которого повернуты относительно координатных осей х и у. Ориентация эллипса и его полуоси зависят довольно сложным образом от амплитуд A и В и разности фаз α .