Экспрессия генов Патрушев
.pdf401
ДНК своей небольшой хромосомы и многие белки клетки-хозяина, что позволяет исследовать функционирование репликативного комплекса клеток человека в такой относительно простой системе.
У эукариот обнаружены шесть ДНК-полимераз, три из которых – α, δ и ε – непосредственно участвуют в репликации хромосомной ДНК (табл. I.17). Аминокислотные последовательности этих трех ферментов гомологичны друг другу и последовательности продукта гена 43 бактериофага Т4. Эукариотическая ДНК-праймаза в отличие от аналогичного белка прокариот образует постоянный комплекс с ДНК-полимеразой α, роль которого, повидимому, ограничивается синтезом праймеров при репликации обеих цепей ДНК.
Белок PCNA и фактор репликации C (RFС) также образуют стабильный комплекс с ДНК-полимеразой δ, а в определенных условиях стимулируют и активность ДНК-полимеразы ε. Во многих отношениях PCNA и RFС являются функциональными аналогами соответственно β-белка и белков γ-комплекса E. coli (см. рис. I.46,б), и их роль в синтезе ведущей и отстающей цепей ДНК вируса SV40 хорошо известна. Механизмы репликации ДНК прокариот и эукариот существенно различаются в том отношении, что во втором случае синтез ведущей и отстающей цепей ДНК
402
Таблица I.16
Эукариотические ДНК-полимеразы и их функциональные гомологи у
|
|
|
прокариот |
|
|
|
|
|
|
|
|
ДНК- |
|
|
Молекулярные |
|
|
Ген |
Гомолог |
массы |
|
||
полимер |
Биологические функции |
||||
дрожжей |
E. coli |
субъединиц, |
|||
аза |
|
|
кДа |
|
|
|
|
|
|
||
|
|
|
|
|
|
α |
POL1 |
? |
160–185 |
Синтез ведущей цепи геномной |
|
|
|
|
|
ДНК в репликативной вилке; в |
|
|
|
|
|
комплексе с праймазой |
|
|
|
|
|
обеспечение синтеза праймеров |
|
|
|
|
|
на обеих цепях ДНК |
|
β |
|
Pol I |
40 |
Заполнение брешей при |
|
|
|
|
|
эксцизионной репарации ДНК, |
|
|
|
|
|
участие в рекомбинации |
|
γ |
MIP1 |
− |
140 (человек) |
Репликация митохондриальной |
|
|
|
|
116 (дрожжи) |
ДНК |
|
δ |
POL3 |
Pol III |
125 |
Синтез отстающей цепи геномной |
|
|
|
|
|
ДНК в репликативной вилке |
|
ε |
POL2 |
Pol II (?) |
210–230 |
Репарация ДНК, регуляция |
|
|
|
|
|
клеточного цикла (?) |
|
ζ |
REV3 и |
Pol IV |
173 и 29 |
Синтез ДНК на поврежденной |
|
|
REV7 |
(DinB/P) |
|
матрице при SOS-ответе |
|
η |
RAD30 |
DinB, |
70 |
Синтез ДНК на поврежденной |
|
|
|
UmuC |
|
матрице, с включением остатков |
|
|
|
|
|
А напротив тиминовых димеров |
Примечание. ? − гомологи неизвестны.
403
осуществляют разные ДНК-полимеразы (α и δ соответственно), тогда как у E. coli обе цепи ДНК синтезируются димером ДНК-полимеразы III. ДНКполимераза α проводит инициацию синтеза ведущей цепи в точках начала репликации, а ДНК-полимераза δ осуществляет циклические реинициации синтеза фрагментов Оказаки, по-видимому, распознавая наличие 5’-концевого нуклеотида очередного праймера с последующей диссоциацией от матричной ДНК и присоединением к ней для реинициации синтеза следующего фрагмента Оказаки. Созревание фрагментов Оказаки у эукариот требует удаления РНКзатравок с помощью 5’→3’-экзонуклеазы (белковые факторы FEN-1 или MF-1) и РНКазы H1, а также ковалентного соединения фрагментов друг с другом под действием ДНК-лигазы I.
Роль ДНК-полимеразы ε в настоящее время не ясна. Возможно, этот фермент непосредственно участвует в репликации или в сопряженной с репликацией репарации повреждений ДНК, а также в регуляции клеточного цикла.
ДНК-полимераза ζ обнаружена в 1996 г. у дрожжей S. cerevisiae. При исследовании белков Rev3 и Rev7, которые необходимы для мутагенеза, индуцируемого в ответ на повреждения ДНК, оказалось, что их комплекс обладает ДНК-полимеразной активностью. Эта полимераза способна эффективно использовать в качестве матрицы ДНК, содержащую циклобутановые димеры. В таких условиях активность ДНК-полимеразы α составляет лишь 1% от активности ДНК-полимеразы ζ.
ДНК-полимераза η, так же как и предыдущий фермент, участвует в SOSответе дрожжей на генотоксические воздействия. В присутствии всех четырех дезоксирибонуклеозидтрифосфатов она осуществляет включение в строящуюся цепь ДНК напротив тиминовых димеров только правильных нуклеотидов (А). Подробнее о функциях бактериальных гомологов двух последних ДНК-полимераз в SOS-мутагенезе см. в разделе 5.1.2.
4.2. Регуляция репликации ДНК
Подробное рассмотрение молекулярных механизмов регуляции репликации ДНК выходит за рамки книги, поэтому ограничимся несколькими замечаниями по данному вопросу и более детально обсудим лишь механизм
404
регуляции репликации у E. coli, в том числе и бактериальных плазмид, что имеет непосредственное отношение к функционированию плазмидных векторов в бактериальных клетках.
Синтез ДНК тесно связан с другими процессами, подготавливающими деление клеток, так как передача необходимой генетической информации родительских клеток дочерним является для клеток-потомков жизненно важной. Наличие избыточной генетической информации отрицательно сказывается на жизнеспособности клеток, тогда как недостаток ее, возникающий вследствие недорепликации ДНК, приводит к летальному эффекту из-за отсутствия жизненно важных генов. Однако процесс передачи генетической информации от родительских клеток дочерним у эукариот не ограничивается простой редупликацией ДНК хромосом. Так, для насекомых многих видов характерно наличие гигантских политенных хромосом, которые возникают в результате множественных раундов репликации ДНК исходных хроматид, не сопровождающейся их расхождением.
Политенизация хромосом представляет обширный класс генетических явлений, связанных с избирательной избыточной репликацией (мультипликацией) или недорепликацией отдельных генетических локусов эукариот. Ярким примером такого рода является изменение числа генов рибосомных РНК у животных. Амплификация генов рРНК в ооцитах амфибий происходит путем образования их внехромосомных (экстрахромосомных) копий в виде кольцевых молекул рибосомных (р) ДНК, которые далее реплицируются по механизму "катящегося кольца". При этом в каждой клетке амплифицируется только по одному из сотен повторов рДНК, так что амплификация рДНК на одном повторе каким-то образом подавляет процесс амплификации на других, и все образовавшиеся повторы одного ооцита идентичны, но отличаются от наборов амплифицированных рДНК других ооцитов. Строгая стадие- и тканеспецифичность, а также избирательная амплификация только одного повтора рДНК указывают на наличие тонких регуляторных механизмов процесса репликации и в этом случае.
Характерными примерами возрастания числа генов вследствие их избирательной репликации являются магнификация генов рРНК и изменение числа генов, определяющих устойчивость клеток к лекарственным препаратам. В первом случае утрата части генов рРНК у дрозофилы в результате делеции
405
сопровождается постепенным восстановлением их числа, тогда как во втором случае у клеток, находящихся в условиях селективного действия токсичного для них лекарственного препарата, возрастает число копий генов, необходимых для его нейтрализации. В частности, это характерно для гена дигидрофолатредуктазы в присутствии метотрексата. Высказывается предположение, что в основе изменения числа копий таких генов лежит механизм неравного кроссинговера.
Репликация хромосом бактерий тесно сопряжена с метаболизмом клеток. Например, частота инициаций новых раундов репликации зависит от скорости роста бактериальных клеток, и в клетках быстро растущих бактерий могут содержаться хромосомы с несколькими работающими репликативными вилками, хотя для репликации одной бактериальной хромосомы их требуется только две, инициированные в единственной области начала репликации (ori) и расходящиеся в противоположных направлениях. Это позволяет бактериям при благоприятных условиях затратить для генерации меньше времени, чем для полной репликации бактериальной хромосомы. Очевидно, что для поддержания строго упорядоченного характера репликации должны существовать тонкие механизмы регуляции репликации на уровне инициации новых раундов. Такие механизмы, действительно, существуют.
Наиболее хорошо изученными в настоящее время являются механизмы регуляции синтеза ДНК у E. coli, в том числе механизмы контроля числа копий у небольшой плазмиды E. coli ColE1, которые будут рассмотрены ниже более подробно из-за важности этих явлений для генной инженерии.
4.2.1. Инициация репликации ДНК у E. coli и ее регуляция
Репликация хромосомной ДНК у бактерий играет ключевую роль в их жизненном цикле. В ходе этого процесса микроорганизмы редуплицируют свой геном, а образовавшиеся дочерние геномы далее переходят в дочерние клетки. Высокая точность, с которой бактерии осуществляют такие процессы, указывает на наличие специальных механизмов их координации и контроля.
Структура области начала репликации oriC. Хромосома E. coli
содержит единственную область начала репликации (origin), названную oriC, на которой происходит инициация репликации (рис. I.47,а). Размер минимальной области начала репликации, обеспечивающей автономную
406
репликацию хромосомы, составляет 258 п.о. (положение 11–268 на рис. I.47). Сравнение первичных структур областей начала репликации различных энтеробактерий показало, что их последовательности представлены короткими консервативными участками, которые перемежаются дивергировавшими сегментами ДНК, длины которых, однако, высококонсервативны. Консервативные участки оказались сайтами связывания регуляторных белков, разделенных спейсерными последовательностями. OriC содержит пять консенсусных 9-нуклеотидных сайтов связывания инициатора DnaA (непалиндромные повторы), названных DnaA-боксами. У всех энтеробактерий области начала репликации содержат 9–14 сайтов GATC, положение восьми из которых консервативно.
В левой части oriC находится AT-богатая область, содержащая три похожих последовательности длиной в 13 нуклеотидов, каждая из которых начинается с GATC. Здесь же локализован AT-кластер, который вместе с левой 13-нуклеотидной последовательностью образует область нестабильной спирали ДНК (ДНК-расплетающий элемент). Этот участок ДНК может быть заменен без потери функции на аналогичный по нуклеотидному составу, но с другой последовательностью нуклеотидов.
OriC содержит сайты связывания белков, изгибающих ДНК, IHF (integration host factor) и FIS (factor for inversion stimulation). Оба белка, по-
видимому, помогают инициатору DnaA раскручивать ДНК.
Димерный белок IciA, состоящий из субъединиц с молекулярной массой 33 кДа, специфически связывается с AT-богатыми 13-мерными повторами. Функция этого белка неизвестна, так же как и функция белка Rob, который специфически взаимодействует с 26-нуклеотидным сайтом в правой части DnaA-бокса R4. ДНК вблизи Rob-сайта обнаруживает изгиб, который более ярко выражен у молекул, полностью метилированных Dam-метилтрансферазой (см. ниже). С такими полностью метилированными ДНК взаимодействует гистоноподобный белок H-NS, сайт связывания которого перекрывается с Robсайтом. Это взаимодействие оказывает влияние на функционирование oriC.
407
408
Рис. I.47. Структура области начала репликации хромосомы E. coli (а) и схема инициации ее репликации (б)
HobH – белок, взаимодействующий с метилированной по одной цепи ДНК области начала репликации (hemimethylated origin binding)
Функции белка DnaA. Белок DnaA играет ключевую роль в сборке реплисомы – многокомпонентного белкового комплекса, осуществляющего двунаправленный синтез ДНК. Белок распознает область начала репликации и привлекает к месту сборки остальные белковые компоненты реплисомы.
Этапы инициации синтеза ДНК на oriC. Сборка исходного комплекса
начинается с взаимодействия белка DnaA с DnaA-боксами R1–R4 и M (см. рис. I.47,б). Для успешного прохождения последующих этапов сборки реплисомы белок DnaA должен находиться в комплексе с ATP и взаимодействовать с сверхспирализованным oriC. С помощью электронного микроскопа исходный комплекс обнаруживается в виде компактной эллипсоидной структуры, содержащей 20 мономеров DnaA, которая закрывает oriC. Исходный комплекс обладает высокоупорядоченной структурой.
В присутствии ATP в высокой концентрации (5 мМ) исходный комплекс превращается в открытый комплекс. В этом комплексе происходит частичное расплетение АТ-богатых 13-нуклеотидных повторов, расположенных в левой
409
части oriC. При 37° или выше единственный белок DnaA может обеспечивать расплетение ДНК. Для образования открытого комплекса при более низких температурах требуется участие структурирующего белка HU или интеграционного фактора бактерии-хозяина IHF. В открытом комплексе обнаруживают небольшие участки расплетенной ДНК в правой части oriC между DnaA-боксами R2 и R4, которые рассматривают как места посадки хеликазы.
Белок DnaB является хеликазой репликативной вилки и входит в открытый комплекс с образованием препраймирующего комплекса I, взаимодействуя с одноцепочечными участками частично расплетенной ДНК. Такие участки подготавливаются белком DnaA, который вытесняет SSB-белок с соответствующих сайтов. DnaB входит в препраймирующий комплекс I в виде гексамеров, образовавших комплекс с шестью мономерами DnaC, каждый из которых связывает одну молекулу ATP. В этом комплексе хеликазная активность белка DnaB блокирована. Освобождение DnaC из комплекса происходит в результате гидролиза ATP. Следствием этого является активация хеликазы DnaB и ее правильное расположение в комплексе. Совокупность этих событий превращает препраймирующий комплекс I в препраймирующий комплекс II.
Хеликаза должна начать функционировать в месте старта репликативной вилки в правой части oriC вблизи DnaA-боксов R2, R3 и R4. Для этого она должна быть транслоцирована от места ее первоначального вхождения в комплекс к точке начала репликации. Предполагается, что транслокация ассоциирована с ATP-зависимым освобождением из комплекса белка DnaC, что сопровождается активацией хеликазы.
В праймирующем комплексе хеликаза DnaB взаимодействует с DnaGпраймазой, которая играет ключевую роль в обеспечении инициации репликации именно на oriC. Оба этих фермента обеспечивают сопряжение функционирования двух репликативных вилок, движущихся в противоположные стороны. В бесклеточной системе при низких концентрациях праймазы репликация становится однонаправленной и может инициироваться не на oriC. В праймирующем комплексе присутствие белка DnaA больше не требуется, и он после освобождения из комплекса может быть повторно использован для инициации репликации на другом oriC. Полагают, что во время
410
координированной сборки двух репликативных вилок в одной из них синтезируется праймер, который становится затравкой при синтезе ведущей цепи другой репликативной вилкой, движущейся в противоположном направлении. Праймаза в праймирующем комплексе функционирует по дистрибутивному механизму. После синтеза праймеров она покидает репликативную вилку и заменяется новой молекулой праймазы во время образования очередного фрагмента Оказаки.
При образовании реплисомы в каждой репликативной вилке происходит ATP-зависимое формирование димерного комплекса холофермента ДНКполимеразы III, связанного с 3'-концами праймеров (скользящий зажим, см. выше). Вслед за этим происходит координированная элонгация праймеров, сопровождаемая двунаправленным синтезом ведущих и отстающих цепей ДНК. В бесклеточной системе точки начала синтеза ведущих цепей локализованы в oriC вблизи DnaA-боксов R2, R3 и R4.
Механизмы контроля инициации репликации in vivo. Инициация репликации ДНК у E. coli регулируется, по крайней мере, на трех уровнях: 1) инициация синхронизирована с клеточным циклом; 2) синтез ДНК в каждой области начала репликации в клеточном цикле инициируется только один раз; 3) инициация происходит синхронно во всех областях начала репликации, присутствующих в данной бактериальной клетке. Установлено, что синтез ДНК начинается после того, как масса бактериальной клетки в расчете на одну область начала репликации достигает определенного значения, названного массой инициации (initiation mass). В качестве основного водителя ритма (пейсмекера), играющего ключевую роль в контроле инициации репликации, в настоящее время рассматривается белок DnaA.
Подавление синтеза белка in vivo сопровождается завершением уже инициированного синтеза ДНК на фоне прекращения новых раундов инициации. Возобновление синтеза белка приводит к инициации репликации после лаг-периода в одну клеточную генерацию. При наличии всех необходимых белков инициация чувствительна к рифампину – специфическому ингибитору бактериальной РНК-полимеразы, что указывает на зависимость инициации от синтеза нетранслируемой РНК.
Роль топологии oriC в инициации репликации. Топоизомераза I и
топоизомераза II (ДНК-гираза) поддерживают бактериальную хромосому в
