Экспрессия генов Патрушев
.pdf361
Фактор eIF4E в регуляции роста и пролиферации клеток. Как следует из вышеизложенного, фактор eIF4E и его белковые ингибиторы являются специфическими мишенями протеинкиназ, активируемых в ответ на внеклеточные регуляторные воздействия. Это указывает на важную роль фактора в регуляции клеточного цикла. Действительно, микроинъекция eIF4E в покоящиеся фибробласты индуцирует в них синтез ДНК, а антисмысловые РНК к мРНК фактора резко увеличивают время прохождения клеток через G1/S фазы клеточного цикла.
Сверхэкспрессия гена eIF4E приводит к характерным морфологическим изменениям в клетках HeLa и трансформирует иммортализованные клеточные линии грызунов. При этом происходит подавление апоптоза, индуцируемого в клетках истощением сыворотки. Кроме того, повышение внутриклеточного уровня фактора имеет место в опухолях различного происхождения. Все это делает фактор eIF4E объектом пристального внимания онкологов.
Фактор eIF2 как объект регуляторных воздействий. Как уже упоминалось выше, eIF2 представляет собой гетеротримерный белковый комплекс. Его α-субъединица фосфорилируется тремя известными киназами эукариот: у животных – HRI и PKR, а у дрожжей – GCN2. Фосфорилирование фактора предотвращает обмен GDP на GTP, опосредованный фактором eIF2B, и ингибирует трансляцию. Поскольку фосфорилированная форма eIF2 обладает повышенным сродством к eIF2B, последний становится эффективным конкурентным ингибитором формирования активного комплекса eIF2–GTP–Met- тРНКi.
В качестве примера изменения эффективности трансляции мРНК через фосфорилирование фактора инициации eIF2 рассмотрим механизм контроля биосинтеза гемоглобина под действием гема. Этот пример интересен также и тем, что объясняет необходимость добавления гема в бесклеточные системы трансляции, получаемые на основе белков ретикулоцитов. Более подробно бесклеточные системы трансляции описаны в разделе 7.5.
Трансляция глобиновой мРНК в бесклеточной системе биосинтеза белка из ретикулоцитов кроликов в отсутствие гемина (окисленной формы гема) сопровождается быстрым прекращением включения аминокислот в растущие полипептидные цепи, т.е. остановкой трансляции. Оказалось, что в отсутствие гемина специфическая протеинкиназа фосфорилирует фактор инициации
362
трансляции eIF2, который в фосфорилированном состоянии прочно взаимодействует с другим фактором инициации eIF2B и в составе комплекса остается в связанном с рибосомами состоянии. В результате трансляция глобиновой мРНК останавливается. Гемин, находящийся в избытке в системе трансляции, взаимодействует с протеинкиназой и инактивирует ее. Протеинкиназа утрачивает способность фосфорилировать фактор eIF2 и, как следствие, блокировать трансляцию.
Координация синтеза глобинов на уровне трансляции происходит и в других случаях. Известно, что в диплоидной клетке человека имеются четыре активных α-глобиновых и лишь два экспрессирующихся β-глобиновых гена. Поскольку правильная сборка молекул гемоглобина предполагает участие эквимолярных количеств полипептидных цепей α- и β-глобина, необходима координация биосинтеза этих белков, которая осуществляется на уровне инициации трансляции. Оказывается, α-глобиновая мРНК конкурирует с β-
глобиновой мРНК за факторы инициации трансляции, однако β-глобиновая мРНК обладает большим сродством к факторам, что приводит к более высокой эффективности ее трансляции по сравнению с α-глобиновой мРНК. Предполагается, что в качестве фактора инициации трансляции, ответственного за предпочтительную трансляцию β-глобиновой мРНК, выступает кэп-связывающий белок.
Вышеописанные примеры показывают, как изменяется эффективность инициации трансляции определенных мРНК рибосомами при непосредственном воздействии на факторы инициации. Имеются и другие механизмы регуляции эффективности трансляции и, в конечном счете, регуляции экспрессии генов, реализующие свое действие через изменение эффективности инициации трансляции мРНК. Среди факторов, влияющих на эти механизмы, следует упомянуть, во-первых, разную эффективность ("силу") 5’-концевых областей инициации трансляции TIR (в частности последовательности Шайна–Дальгарно), необходимых для связывания рибосом в процессе образования инициаторного комплекса. Такие последовательности обеспечивают требуемую скорость трансляции соответствующих мРНК (подробнее см. раздел 7.2.6). Во-вторых, регуляция скорости инициации трансляции возможна за счет влияния пространственной
363
структуры 5’-концевого инициаторного района мРНК. Сворачивание этой части мРНК в стабильную пространственную структуру блокирует трансляцию. В- третьих, эффективная регуляция инициации трансляции определенных мРНК достигается за счет специфического взаимодействия инициаторных участков мРНК с белками-регуляторами, которые в данном случае выступают репрессорами инициации трансляции.
Белки, взаимодействующие с мРНК, как регуляторы трансляции.
Большинство регуляторных белков, взаимодействующих с 5’-концевыми TIRпоследовательностями мРНК прокариот, являются негативными регуляторами трансляции. Классический пример такой регуляции экспрессии генов дают рибосомные белки E. coli – репрессоры собственного синтеза, которые предотвращают взаимодействие 30S субчастиц рибосом со своими мРНК. Оригинальный механизм репрессии использует рибосомный белок S15, который, взаимодействуя с TIR-последовательностью своей мРНК, стабилизирует предсуществующий псевдоузел. В результате SD-область мРНК становится ловушкой для 30S субчастицы рибосом, которая взаимодействует с ней, но не может инициировать синтез белка.
Аналогичные механизмы функционируют и у эукариот. В этом отношении хорошо изучена регуляция трансляции мРНК ферритина, синтазы δ- аминолевулиновой кислоты и субъединицы b сукцинатдегидрогеназы позвоночных животных. 5’UTR мРНК этих белков содержат регуляторный элемент IRE (iron-responsive element), с которым взаимодействует белок IRP (iron-regulatory protein), акцептирующий ионы железа. В отсутствие железа IRP связывается с IRE и блокирует трансляцию мРНК. Сродство IRP к IRE понижается в 50–100 раз, если он находится в комплексе с ионами железа. Этого оказывается достаточно для вовлечения соответствующих мРНК в трансляцию.
Цитоплазматические мРНК, не участвующие в синтезе белка в составе полисом, образуют нетранслируемые мРНП-комплексы. Кроме уже рассмотренных выше регуляторных белков, распознающих определенные последовательности мРНК конкретных видов, два белка обнаруживаются во всех мРНП в большом количестве: поли(А)-связывающий белок PABP (p70) и белок р50 с молекулярной массой ~50 кДа. Роль белка PABP в стабилизации мРНК и инициации трансляции уже обсуждалась. Теперь же целесообразно
364
рассмотреть регуляторные функции белка p50.
Белок p50, ассоциированный с цитоплазматическими мРНП-
частицами. В отличие от белка PABP, преимущественно ассоциированного с функционирующими полисомами, белок p50 является основным компонентом как неактивных мРНП, так и участвующих в синтезе белка. Белок p50 ретикулоцитов кроликов обнаруживает до 98% гомологии с факторами транскрипции животных, взаимодействующими с так называемым Y-боксом, цис-действующей регуляторной последовательностью ДНК CTATTGGC/TC/TAA. Факторы этого семейства преимущественно связывают одноцепочечную и апуринизированную ДНК, трехцепочечную H-ДНК и РНК.
Отмечена двойственная роль белка p50 в регуляции трансляции: он может выступать как ингибитор и как активатор биосинтеза белка. При высоком отношении p50/мРНК (5–10 молекул белка на молекулу мРНК) имеет место ингибирование трансляции, при низком (до четырех молекул p50 на молекулу мРНК) – активация. Ингибирующая функция белка обнаружена при депонировании мРНК в ооцитах, а также в условиях сверхэкспрессии p50 в соматических клетках. Возможно, при высоких концентрациях белка происходит освобождение его С-концевых частей от контактов с РНК, приводящее к мультимеризации белка и переходу мРНП в конденсированное состояние.
Альтернативно, белок p50 выступает в качестве фактора трансляции в полисомах, активно синтезирующих белок. Полагают, что в этом случае он может облегчать инициацию трансляции, предотвращая неспецифическое взаимодействие мРНК с факторами трансляции, а также обеспечивая формирование у мРНК оптимальной пространственной структуры. Поскольку у p50 обнаружена РНК-расплетающая активность, он может способствовать сканированию 5’UTR мРНК прединициационным комплексом.
Антисмысловые РНК как регуляторы трансляции. Прокариотические антисмысловые РНК длиной 70–110 нт образуют структуры типа "стебель– петля", в которых стебель защищает эти РНК от деградации, а петля длиной шесть–восемь нт служит для первоначального взаимодействия с мРНКмишенью. После образования комплексов РНК–РНК наблюдали изменение стабильности мРНК, эффективности процессинга РНК-мишени, терминации транскрипции или инициации их трансляции. Из этого видно, что антисмысловые РНК являются мощными природными модуляторами
365
экспрессии генов у прокариот. Данные о возможном участии природных антисмысловых РНК в регуляции трансляции у эукариот противоречивы.
Короткие ОРС в 5’-концевых лидерных последовательностях РНК как регуляторы трансляции. Около 10% мРНК растений содержат в своих 5’- концевых лидерных последовательностях более одного AUG-кодона. Некоторые из них удаляются с помощью альтернативного сплайсинга. Другие возникают в результате использования РНК-полимеразами альтернативных промоторов при инициации транскрипции соответствующих генов. Присутствие коротких ОРС в лидерных последовательностях мРНК, как правило, сопровождается снижением эффективности трансляции таких матриц. Функционирование этого механизма обнаружено в клетках млекопитающих, растений и дрожжей. Влияние коротких ОРС на трансляцию расположенных ниже последовательностей нуклеотидов мРНК недавно было детально исследовано с использованием искусственных генно-инженерных конструкций, в которых изменяли длину и число потенциальных сайтов инициации трансляции, предшествовавших генам-репортерам. Оказалось, что ингибирующее действие коротких ОРС возрастает с увеличением их длины. Даже одиночный AUG-кодон, снижает уровень трансляции ниже расположенных последовательностей, по крайней мере, в два раза. Короткие ОРС промежуточной длины ( 30 кодонов) обладали пятикратным ингибирующим действием, а протяженные ОРС (>100 кодонов) полностью подавляли трансляцию следующих за ними последовательностей. Механизм ингибирующего действия коротких ОРС связан с тем, что они транслируются. Это снижает вероятность инициации трансляции на инициирующих кодонах, расположенных вслед за ними, поскольку процесс реинициации трансляции требует вхождения новых факторов инициации трансляции в инициаторный комплекс, включающий рибосому.
Трансактивация трансляции полицистронных РНК у вирусов.
Предшественники геномной РНК вируса мозаики цветной капусты, а также их производные, подвергнутые альтернативному сплайсингу, являются полицистронными мРНК для многих вирусных белков. ОРС сближены друг с другом, и их не разделяют протяженные межцистронные последовательности. Такие РНК содержат внутренние AUG-кодоны, которые неэффективно используются для инициации трансляции в протопластах или трансгенных
366
растениях, однако начинают функционировать в присутствии вирусных геновтрансактиваторов (TAV) (рис. I.40,д). В частности, трансактиваторная функция
Рис. I.40. Механизмы трансляции полицистронных мРНК у вирусов растений
Черные, серые и светлые прямоугольники изображают различные ОРС в полицистронных РНК, вертикальные линии над ними – AUG-кодоны, горизонтальные стрелки указывают направление перемещения рибосом во время шунта, вертикальная стрелка указывает положение частично супрессируемого стоп-кодона, TAV – гены-активаторы
а, б, в – примеры ослабленного сканирования полицистронных мРНК, содержащих: а – два сайта инициации трансляции на одной ОРС (вирус мозаики вигны (cowpea)), б – перекрывающиеся ОРС (вирус желтой мозаики турнепса), в – две последовательно расположенные ОРС (вирус скрытой мозаики сливы); г – схема шунтирования сайтов инициации (вирус мозаики цветной капусты); д – трансактивация последовательно расположенных ОРС (тот же вирус); е – частичная супрессия стоп-кодона (вирус мозаики табака); ж – сдвиг рамки считывания (вирус желтой карликовости ячменя)
была показана для ОРС IV вируса CaMV и конкретных ОРС многих других
367
вирусов растений. Кодируемый этим геном белок TAV специфически стимулирует трансляцию внутренних ОРС. В искусственных РНК трансактивация оказывается особенно эффективной, если в первой ОРС присутствует 30 кодонов. Трансактивацию наблюдали для нескольких ОРС, которые были расположены ниже короткой первой рамки считывания. О том, что трансактивация происходит на уровне реинициации трансляции, свидетельствовали полярные эффекты вставок в такие полицистронные РНК последовательностей со вторичной структурой типа шпилек. Поскольку эффективность трансактивации зависела от длины первой ОРС, был сделан вывод, что трансактиватор действует прямо или косвенно на элонгирующие (или терминирующие) рибосомы. Оптимальная длина первой ОРС в 30 кодонов обеспечивает синтез пептида, длины которого достаточно для появления на поверхности транслирующей рибосомы. Предполагают, что на последующем этапе трансляции происходят структурные изменения рибосом, которые приводят к потере способности рибосом к реинициации трансляции и, как следствие, к трансактивации рибосом.
Функция трансактивации связана с центральной частью полипептидной цепи TAV. В процессе трансляции TAV взаимодействует с полисомами, а также с рибосомным белком (молекулярная масса 18 кДа) клеток дрожжей и растений. Трансгенные растения Arabidopsis и табака, экспрессирующие белок TAV, обладают ненормальным фенотипом и пониженной жизнеспособностью. Однако в настоящее время неясно, является ли это следствием способности белка обеспечивать трансактивацию трансляции или сопряжено с его другими, неизвестными активностями.
3.4.2. Регуляция элонгации синтеза полипептидных цепей
При обсуждении механизмов элонгации цепей РНК в процессе транскрипции была отмечена неравномерность прочитывания матричной ДНК РНК-полимеразами. То же самое наблюдается и во время элонгации растущих полипептидных цепей в процессе трансляции: не все участки мРНК транслируются с одинаковой скоростью. Прежде всего, рибосомы в процессе трансляции мРНК могут задерживаться на кодонах, соответствующих минорным изоакцепторным тРНК, присутствующим в клетке. В этом случае
368
внутриклеточная концентрация изоакцепторных тРНК лимитирует весь процесс трансляции. Кодоны, соответствующие минорным изоакцепторным тРНК, А.С. Спирин предлагает называть модулирующими, поскольку они могут изменять скорость трансляции соответствующих мРНК. Чем больше модулирующих кодонов в мРНК, тем медленнее она транслируется. В то же время клетка может изменять эффективность трансляции определенных мРНК путем адаптации внутриклеточных концентраций изоакцепторных тРНК к числу модулирующих кодонов этих мРНК. Было показано, в частности, что во время интенсивного синтеза фиброина в шелкоотделительных железах тутового шелкопряда внутриклеточный спектр изоакцепторных тРНК сильно меняется и становится идеально соответствующим потребностям белоксинтезирующего аппарата клеток, осуществляющего трансляцию мРНК фиброина.
Другим фактором, от которого зависит изменение скорости перемещения рибосомы вдоль транслируемой молекулы мРНК, является характерная пространственная структура матрицы. Для разворачивания индивидуальных участков пространственной структуры мРНК, обладающих неодинаковой стабильностью, требуется разное время, что находит отражение в различной скорости трансляции рибосомами индивидуальных мРНК.
Наконец, обнаружен ряд регуляторных белков, которые после взаимодействия с транслирующей рибосомой избирательно задерживают трансляцию в определенных местах мРНК. Например, у эукариот известна рибонуклеопротеидная частица, содержащая 7S-РНК, которая узнает особую N- концевую гидрофобную аминокислотную последовательность растущего полипептида, присоединяется к рибосомам и блокирует трансляцию до тех пор, пока рибосома не вступит во взаимодействие с мембраной эндоплазматического ретикулума. Регуляция экспрессии генов на уровне элонгации трансляции широко распространена в живой природе. Во время многих вирусных инфекций скорость элонгации полипептидов зараженных клеток резко снижается. Это явление обнаружено, в частности у пикорнавирусов и вирусов осповакцины. Факторы элонгации трансляции могут быть мишенями различных регуляторных воздействий.
Запрограммированный сдвиг рамок считывания и неполная супрессия терминирующих кодонов во время элонгации полипептидных цепей. Процесс трансляции мРНК характеризуется высокой точностью, и даже
369
систематические "ошибки" трансляции могут быть генетически запрограммированными. У бактерий транслирующая рибосома может пропускать протяженные последовательности нуклеотидов мРНК, не прекращая синтеза единой полипептидной цепи. Такое явление неизвестно у эукариот. Однако у них в процессе декодирования кодона, находящегося в А- участке рибосомы, может происходить намеренное распознавание кодона "неправильной" аминоацил-тРНК или сдвиг рамки считывания у работающей рибосомы. Следствием этого бывает частичная супрессия терминации трансляции на терминирующих кодонах или синтез одной полипептидной цепи с использованием двух разных рамок считывания транслируемой РНК (см. рис. I.40,е,ж). Хорошо изучены такие явления у ретровирусов и ретротранспозонов, которые используют сдвиг рамки считывания и супрессию терминирующего кодона для экспрессии гена pol, в результате которой синтезируется гибридный белок, N-конец которого является частью полипептидной цепи белка оболочки вируса (продукта гена gag). Тот же механизм используется и некоторыми другими вирусами животных, а также клетками дрожжей.
Сигналом к сдвигу рамки считывания у ретровирусов и ретротранспозонов служат гептануклеотидная последовательность типа X.XXY.YYZ (размечена в виде кодонов в рамке считывания 0), а также ниже расположенный регуляторный элемент, образующий определенную вторичную структуру в виде шпильки или псевдоузла. Предполагается, что сдвиг рамки происходит в тот момент, когда пептидил-тРНК, связанная с кодоном XXY в Р- участке рибосомы, и аминоацил-тРНК, взаимодействующая с кодоном YYZ в А- участке, одновременно сдвигаются на один нуклеотид назад и становятся напротив кодонов XXX и YYY транслируемой РНК. Сдвиг рамки считывания по этому механизму не всегда сопровождается образованием нового уникального белка, но часто приводит к синтезу небольшого числа вариантов полипептидных цепей, незначительно различающихся аминокислотными остатками в окрестностях сдвига рамки. Для осуществления сдвига рамки считывания РНК по такому механизму необходимо, чтобы обе молекулы тРНК в А- и Р-участках образовывали прочную связь с новыми кодонами, которые отличаются от первых только нуклеотидами в положении 3, допускающем неоднозначное соответствие антикодону. Процесс сдвига рамки вызывается
370
или усиливается структурным элементом РНК, перед которым работающая рибосома делает паузу в трансляции. Природа кодонов также важна для функционирования обсуждаемого механизма: из всех возможных XXY-кодонов в настоящее время в сайтах сдвига рамки считывания обнаружены только кодоны AAC, UUU, UUA и AAU. Терминирующие кодоны, часто обнаруживаемые сразу за сайтом сдвига рамки считывания, стимулируют сдвиг, так как вызывают остановку рибосомы. Эффективность сдвига рамки считывания может достигать 1–30%.
3.4.3. Регуляция терминации трансляции
Альтернативные сайты терминации трансляции могут быть использованы для расширения кодирующего потенциала определенных генов. Выше уже был рассмотрен пример, в котором в результате редактирования РНК в мРНК аполипопротеина B человека образуется новый терминирующий кодон, что приводит к синтезу в определенных тканях укороченного полипептида, кодируемого тем же самым геном, что и полипептид нормального размера.
Аналогичного эффекта система трансляции достигает посредством неполной терминации синтеза полипептидов на некоторых терминирующих кодонах. Из трех терминирующих кодонов наименее эффективным является UGA. Он чаще остальных ошибочно распознается транслирующей рибосомой как осмысленный (по-видимому, с участием триптофановой тРНК). В результате синтезируется более длинный полипептид, прекращение синтеза которого происходит на следующем терминирующем кодоне. В частности, такая ситуация наблюдается при трансляции РНК фага Qβ. Цистрон белка оболочки фага заканчивается терминирующем кодоном UGA, который с небольшой частотой распознается рибосомами как осмысленный, что приводит к синтезу более длинного, чем белок оболочки, полипептида. Этот полипептид требуется для сборки полноценной (жизнеспособной) фаговой частицы и является жизненно важным для бактериофага Qβ.
Для образования гибридного белка Gag-Pol ретровирусы типа С используют супрессию терминирующего кодона вместо сдвига рамки считывания. Супрессия происходит с эффективностью 5% и сопровождается
