- •Магнитное поле в веществе
- •Общие магнитные съемки Земли
- •Палеомагнитные исследования
- •Решение задач региональной геологии
- •Применение магниторазведки при геологическом картировании разных масштабов
- •Применение магниторазведки для поисков полезных ископаемых.
- •Поиски месторождений рудных и нерудных полезных ископаемых.
- •Общая характеристика методики полевой магнитной съемки
- •Способы проведения полевой магнитной съемки
- •Результаты полевой магнитной съемки
- •Аэромагнитная съемка
- •Количественная интерпретация данных магниторазведки
- •Поисково-разведочные геофизические работы на рудные полезные ископаемые (рудная геофизика).
- •Детальная геофизическая разведка рудных месторождений
- •Поиски и разведка черных металлов
- •Поиски и разведка цветных и редких металлов
- •9. Аналитическое выражение поля t. Условия потенциальности функции t. Соотношение между величинами Zа и т в зависимости от простирания тел и широты местности.
Результаты полевой магнитной съемки
В результате полевой съемки по наблюденным составляющим ( ) рассчитываются аномальные магнитные поля (см. 2.3):
(2.16) |
где - нормальное поле, - вариации поля на время замера , . В выражениях для относительных параметров и часто принимается, что и на опорном пункте равны нулю. Это допустимо, если изучаемая площадь не превышает нескольких десятков квадратных километров. Для съемок больших территорий необходимо знать и , т.е. "привязать" опорные пункты к системам сети нормального магнитного поля Земли (см. 4.1.4).
Результаты магнитной съемки изображаются в виде графиков (их называют иногда профилями), карт профилей и карт. На графиках по горизонтальной оси откладываются пикеты, по вертикали - аномалии магнитного поля (положительные значения - вверх, отрицательные - вниз). При построении карт профилей на карте наносятся профили наблюдений, а перпендикулярно им откладываются аномалии. На картах у каждой точки записываются аномальные значения геомагнитного поля и проводятся линии равных значений. Сечение изолиний при построении карт должно быть в 2 - 3 раза больше точности определения аномалий.
Воздушная и морская магнитные съемки
Аэромагнитная съемка
Аэромагнитная съемка проводится по системе профилей при непрерывной записи или на каждом профиле (маршруте). Направления профилей выбираются вкрест предполагаемого простирания структур или тектонических нарушений.
Расстояние между профилями зависит от масштаба съемки: при миллионном масштабе расстояния между маршрутами устанавливаются 10 км, при масштабе 1 : 500 000 - 5 км, при масштабе 1 : 100 000 - 1 км, при масштабе 1 : 50 000 - 500 м. Чем крупнее масштаб, тем меньшей должна быть высота полета аэромагнитной станции. Обычно она меняется от 50 до 500 м. Скорость полета 100 - 200 км. Привязка профилей при аэромагнитной съемке осуществляется разными способами: по аэрофотоснимкам, радиогеодезическая и др. и должна быть тем точнее, чем крупнее масштаб съемки.
Для учета вариаций и сползания нуль-пункта прибора перед началом рабочего дня и после его окончания делается специальный залет на опорный (контроль-ный) маршрут длиной до 10 км. Все рабочие маршруты "привязываются" к контрольным маршрутам.
Для оценки погрешности измерений и увязки между собой маршрутов выбирается несколько профилей, перпендикулярных рабочим маршрутам. На этих профилях проводятся повторные залеты. По результатам повторных измерений вычисляется среднеквадратическая погрешность измерений. Точность съемки считается хорошей, если погрешность не превышает 10 нТл или 20% от амплитуд выявленных аномалий. При обработке магнитограмм аномальные значения рассчитываются путем вычитания из наблюденного значения нормального поля . Последнее определяется по картам нормального магнитного поля или с помощью расчета так называемого нормального градиента по данным аэромагнитной съемки. В результате аэромагнитной съемки строятся карты, графики, а также карты графиков или
Интерпретация и задачи, решаемые магниторазведкой
Интерпретация данных магниторазведки складывается из геофизической интерпретации и геологического истолкования, тесно связанных между собой. Первым этапом является качественная интерпретация, позволяющая судить о местоположении пород с разными магнитными свойствами. Второй этап - количественная интерпретация, или решение обратной задачи магниторазведки, - имеет целью определение количественных параметров разведываемых геологических объектов.
Качественная и количественная интерпретация данных магниторазведки
Качественная интерпретация данных магниторазведки
При качественной интерпретации графиков, карт графиков и карт магнитных аномалий ведется их визуальное выделение. При этом обращается внимание на форму изолиний, их простирание, ширину, соотношение положительных и отрицательных аномалий, абсолютные значения максимумов и минимумов. Далее, используя сведения о магнитных свойствах пород, устанавливают связь тех или иных аномалий магнитного поля с определенными геологическими образованиями.
Интерпретация гравитационных и магнитных аномалий имеет много общих черт (см. 3.1). Это объясняется сходством основных законов взаимодействия гравитационных и магнитных масс (законов Ньютона и Кулона), что и привело к установлению математических связей между гравитационным и магнитным потенциалами. Наряду со сходством имеются и различия в природе и морфологии гравитационных и магнитных аномалий.
Аномалосоздающие объекты в гравиразведке однополярны,т.е. они создают либо положительные, либо отрицательные аномалии. Аномалообразующие объекты в магниторазведке двуполярны, так как каждое намагниченное тело может создавать и положительную, и отрицательную аномалии. По этой причине структура аномального магнитного поля сложнее, чем гравитационного. Она дополнительно усложняется за счет разной длины тел по направлению намагничения, разного угла намагничения, наличием индукционной и остаточной намагниченности пород.
Характерно, что почти для всей территории России намагниченность пород близка к вертикальной, поэтому графики и карты и практически совпадают. При прямой вертикальной намагниченности центры магнитных масс выделяются положительными аномалиями. При наклоне вектора намагниченности, меньшем , максимумы несколько смещаются к югу от эпицентра аномалии , а на северных частях профилей наблюдаются слабые отрицательные аномалии. При горизонтальной намагниченности (в экваториальных районах) соотношение положительных и отрицательных аномалий примерно одинаковo. Аномалии разделяют на составляющие, обусловленные различными по размерам намагниченными объектами. Основным методом такого раздeления является пространственная частотная селекция, при которой магнитные аномалии разделяются по ширине. При этом полагается, что чем больше ширина, тем больше поперечные размеры и глубина залегания аномалосоздающих намагниченных тел.
Основными способами частотной селекции являются усреднение и пересчет в верхнее (для выделения низких частот) и нижнее (для подчеркивания высоких частот) полупространство. Используя эти способы, наблюденные карты и графики трансформируют во вспомогательные карты и графики, как это делается и при обработке гравитационных карт (см. 3.1). На них подчеркиваются (становятся более наглядными) аномалии, обусловленные геологическими объектами разной природы, глубины и особенно разных горизонтальных размеров. Чем больше радиус усреднения и высота пересчета вверх, тем лучше выделяются аномалии большего периода, а значит, больших размеров, т.е. региональные аномалии. Чем больше глубина пересчета вниз, тем лучше подчеркиваются локальные особенности магнитного поля. Имея набор карт с разными уровнями пересчета, можно оценить пространственное изменение и характер источников поля.
На наблюденных или трансформированных картах выявляются и коррелируются аномалии, соответствующие одним и тем же объектам, намечается плановое расположение контактов различных пород, прослеживаются контуры, положение эпицентров, пространственное положение (падение, простирание) тех или иных структур или включений. Изометрическим аномалиям и , у которых поперечные размеры на карте примерно одинаковы, соответствуют изометрические в плане геологические объекты; вытянутым изодинамам соответствуют геологические структуры, отдельные слои и рудные тела вытянутой формы.
Если для вертикально намагниченных тел поле аномалий имеет один знак, то это свидетельствует о большой глубине расположения другого полюса намагниченных пород, т.е. подошва тела залегает на глубине, в 5 - 6 раз большей, чем кровля. Если же глубина залегания нижней части тела мало отличается от глубины залегания верхней части, то вокруг интенсивной аномалии , обязанной верхнему полюсу, будет наблюдаться слабое поле другого знака, обусловленное нижним полюcом намагниченных пород. Направление наклона пород - в ту сторону, где площадь распространения слабых аномалий больше. Экстремумы аномалий пропорциональны магнитному моменту ( ), т.е. возрастают с интенсивностью намагничения ( ), а значит с ростом полного вектора напряженности геомагнитного толя ( ) и магнитной восприимчивости ( ) аномалосоздающих объектов, а также их поперечного сечения ( ), объема ( ) или ширины ( ).
Участкам с высокими горизонтальными градиентами аномалий вертикальной составляющей геомагнитного поля часто соответствуют контакты пород с разными магнитными свойствами.
При наклонном и горизонтaльном намагничении структура поля резко отличается от вертикально намагниченного поля.