
#G0
ПОДГОТОВКА ТЕРРИТОРИИ СТРОИТЕЛЬНОЙ ПЛОЩАДКИ#S
При подготовке территории строительной площадки нередко возникает необходимость сноса старых строений или переноса линий связи и электропередач (ЛЭП), подземных коммуникаций и других сооружений, мешающих производству работ. Снос зданий и сооружений осуществляется разрушением механическим и взрывным способами или разборкой с использованием механизированного инструмента и оборудования. Перенос ЛЭП и других коммуникаций осуществляется в соответствии с ППР по согласованию и под наблюдением соответствующих организаций.
Законодательство об охране окружающей среды требует от строителей бережного отношения к природе и, в частности, сохранения древесной растительности и почвенного слоя в процессе выполнения земляных работ. При необходимости очистку строительной площадки от деревьев и кустарников можно осуществить деревовалами и кусторезами - специальным навесным оборудованием на базе трактора или бульдозером.
Растительный слой грунта на площади будущего земляного сооружения срезают автогрейдерами или бульдозерами, собирают в штабеля и в последующем используют для работ по озеленению и благоустройству территорий.
Строительные нормы разрешают при устройстве насыпей высотой более 1 м не удалять пни и растительный слой из их основания.
Разбивка сооружений и закрепление ее на местности является основой геодезического обеспечения земляных работ. Исходными материалами для разбивки служат стройгенплан, рабочие чертежи сооружения и разбивочные чертежи.
До начала земляных работ определяют положение сооружений на местности, используя геодезический план стройплощадки, составленный в единой системе координат. В процессе подготовки территорию строительной площадки разбивают на квадраты со сторонами 100-200 м, закрепляя вершины квадратов устройством реперов.
При перенесении проекта в "натуру" выполняют геодезические разбивочные работы основные и детальные. Основные включают определение и закрепление на местности главных и основных осей сооружений и зданий. Детальные работы обеспечивают закрепление конфигурации, размеров и высотных отметок элементов сооружений.
Главные оси - это взаимно перпендикулярные линии, относительно которых здание или сооружение симметрично. Их разбивают для сложных по очертанию и имеющих значительные размеры объектов. Основные оси определяют контур здания или сооружения в плане.
При возведении земляных сооружений проверяют геодезические данные по рабочим чертежам проекта, производят разбивку и закрепление в натуре контуров сооружения, нивелирование дневной поверхности в пределах контура сооружения, передачу разбивочных осей и отметок его элементов, периодические исполнительные съемки для подсчета объемов земляных работ и окончательную плановую и высотную исполнительную съемку законченного сооружения.
При планировке площадки на местности обозначают вершины квадратов, характерные промежуточные точки и проектные отметки в вершинах квадратов.
Разбивка выемок и насыпей значительной протяженности состоит в обозначении на местности разбивочными знаками (вехи, шаблоны и т.д.) осей сооружения, его размеров, величины откосов и т.п. Знаки располагают так, чтобы исключить их повреждение при производстве работ.
Для детальной разбивки осей зданий, обозначения контура котлованов и закрепления их на местности служит строительная обноска. Она может быть сплошной по всему периметру здания или прерывистой. Последняя удобнее, так как не затрудняет передвижение строительных машин и транспорта на объекте. Обноску разового пользования устраивают из деревянных стоек или инвентарную из металлических труб (рис.1). Устанавливается обноска с использованием геодезических инструментов параллельно основным осям (они показаны на рис.1 буквами А, В и цифрами I-IV), образующим внешний контур здания на расстоянии, обеспечивающем неизменность ее положения в процессе строительства. На обноске обозначаются оси здания и отметки, перенесенные с закрепленных на местности створных знаков и реперов.
Рис.1. Элементы геодезической разбивки земляного сооружения:
а - инвентарная металлическая стойка обноски; б - схема закрепления осей; в - схема расположения обноски; г - план разбивки котлована
Разбивка зданий и сооружений проверяется и принимается по акту. В процессе строительства периодически производится контроль правильности положения обноски и разбивочных знаков.
Водоотвод предназначен для предотвращения увлажнения грунта на строительной площадке и затопления выемок поверхностными водами.
Для защиты территории от поверхностных вод, поступающих с соседних повышенных участков, по границам строительной площадки устраивают нагорные (ловчие) канавы или обвалования.
С целью предупреждения затопления котлованов и траншей прилегающая к ним территория строительной площадки планируется с уклоном для организации стока дождевых и талых вод, а с нагорной стороны выемки устраивают оградительное обвалование или водоотводные канавы.
Размеры поперечного сечения и уклоны дна канав назначают с учетом притока воды и обеспечения не размывающих грунт скоростей движения воды.
При устройстве выемок, расположенных ниже уровня грунтовых вод, необходимо осушать водонасыщенный грунт, чтобы обеспечить его разработку и предотвратить поступление грунтовых вод в котлован, траншею или подземную выработку на период выполнения в них строительных работ. Осушение грунта может быть проведено открытым водоотливом или искусственным понижением уровня грунтовых вод. Выбор способа осушения зависит от гидрогеологических условий строительной площадки, геометрических параметров выемки и характера производства работ.
Водоотлив представляет собой непосредственную откачку грунтовых вод из выемки. При разработке грунта дну (подошве) выемки придается небольшой уклон (0,2-0,5%) к устраиваемому в пониженной части выемки водосборному приямку (зумпфу). Приямки устраивают вне габаритов сооружений на расстоянии 3-10 м друг от друга и заглубляют на 1 м ниже основания сооружения (рис.2). Воду из приямков откачивают диафрагмовыми или центробежными насосами. Количество и рабочие параметры их выбирают в зависимости от притока воды. Открытый водоотлив применяют в грунтах со сравнительно небольшим коэффициентом фильтрации (до 1м/сут) и отсутствии ниже дна осушаемой выемки напорных грунтовых вод. Недостатком этого метода осушения является возможное разжижение грунта и вынос его частиц фильтрующейся водой.
Рис.2. Открытый водоотлив:
а - план котлована; б - поперечный разрез; 1 - водосборный колодец-зумпф; 2 - всасывающая труба; 3 - насос; 4 - канава
Искусственное понижение уровня грунтовых вод является более совершенным технологическим приемом осушения выемок, особенно в грунтах с коэффициентом фильтрации более 1м/сут. Понижение уровня обеспечивается путем непрерывной откачки воды из водоносного слоя до начала земляных работ и в период производства работ в выемке. Водопонижение может осуществляться тремя основными способами: легкими иглофильтровыми установками, эжекторными иглофильтровыми установками и системой скважин, оборудованных глубинными насосами.
Легкая иглофильтровая установка (ЛИУ) состоит из стальных труб с фильтрующим звеном в нижней части водосборного коллектора и самовсасывающего вихревого насоса с электродвигателем. Ряд иглофильтров погружают в грунт по периметру котлована или вдоль траншеи, и при работе насоса обеспечивается понижение уровня грунтовых вод на глубину до 5-6 м (рис.3). Шаг между иглофильтрами зависит от гидрогеологических условий производства работ и требуемой глубины водопонижения. Легкие иглофильтровые установки применяют в песчаных грунтах при коэффициенте фильтрации от 2 до 5м/сут. При коэффициенте фильтрации от 0,01 до 2м/сут целесообразно применение установок вакуумного водопонижения (УВВ), обеспечивающих более интенсивное понижение уровня грунтовых вод.
Рис.3. Схема водопонижения установками ЛИУ:
a - план котлована с расположением иглофильтров; 1 - коллектор; 2 - иглофильтр; 3 - водокольцевой вакуумный насос; 4 - водоупор; б - одноярусное расположение иглофильтров; в - двухъярусное расположение иглофильтров; г - схема иглофильтра; 1 - коллектор; 2 - гибкий соединительный рукав; 3 - надфильтровая труба; 4 - фильтровое перфорированное звено; 5 - фильтровая сетка; 6 - наконечник иглофильтра; д - схема движения воды при погружении иглофильтра; е - то же, при откачке грунтовой воды
В глинистых грунтах с коэффициентом фильтрации менее 0,05м/сут эффективность водопонижения иглофильтрами можно повысить, используя электроосушение, основанное на явлении электроосмоса.
При глубине водопонижения более 5 м применяют многоярусное расположение легких иглофильтров или эжекторные иглофильтровые установки, обеспечивающие понижение уровня грунтовых вод до 20 м.
Расстояние между иглофильтрами (скважинами), зависящее от интенсивности притока воды, свойств грунта, глубины понижения и т.д., определяется расчетом или по номограммам.
Интенсивность притока воды к замкнутым иглофильтровым установкам может быть приближенно определена по формуле
(1)
где
- коэффициент фильтрации грунта, м/сут;
S - глубина понижения уровня грунтовых
вод, м; H -
мощность водоносного слоя, м; R
- радиус влияния
водопонижения иглофильтровой установки,
м; r
- приведенный радиус круга, площадь
которого равна площади F
котлована, ограждаемого иглофильтрами.
Величины R и r вычисляют по формулам
и
,
(2)
Количество иглофильтров, погружаемых по периметру котлована,
,
(3)
где a
и b -
длина и ширина котлована по верху; с
- расстояние от бровки котлована до
иглофильтра (0,5-1 м);
-
расстояние между иглофильтрами.
В случае необходимости водопонижения на глубину более 20 м применяют систему скважин, пробуренных по периметру выемки и оборудованных артезианскими насосами или трубчатыми колодцами с фильтрационными звеньями диаметром до 0,4 м. Колодцы оборудуют погружными насосами, опускаемыми вместе с двигателем в скважину ниже уровня воды. Глубинное водопониже-ние применяют в сложных гидрогеологических условиях, при глубоких выемках и интенсивном притоке воды.
Устройство выемок в водонасыщенных грунтах можно также производить под защитой ограждения из металлического шпунта, водонепроницаемой ледяной стенки, создаваемой искусственным замораживанием грунта, или тиксотропных противофильтрационных экранов.
Для изменения физико-механических свойств грунта при решении ряда инженерных задач в строительстве применяют искусственное закрепление (стабилизацию) грунтов. Закрепление может быть постоянным и временным. Постоянное закрепление грунтов и трещиноватых скальных пород выполняют для повышения их несущей способности, устойчивости или придания им водонепроницаемости. Такие работы производят при устройстве оснований вновь возводимых или усилении оснований реконструируемых зданий и сооружений.
Временное закрепление грунтов выполняют, как правило, при устройстве выемок в водонасыщенных грунтах на период производства работ. Применяют следующие основные способы закрепления: искусственное замораживание, силикатизацию, смолизацию, цементацию, битумизацию, термический и электрохимический.
Искусственное замораживание применяют для временного закрепления водонасыщенных неустойчивых грунтов без последующего изменения их физико-механических свойств. Его применяют чаще всего для закрепления выемки, разрабатываемой в обводненных мелкозернистых грунтах (плывунах). С этой целью по периметру выемки в грунт погружают замораживающие колонки (рис.4), состоящие из соосно расположенных труб: внешней - замораживающей и внутренней - подающей. В пространстве между трубами циркулирует охлаждающий раствор (хлористый натрий и др.), поступающий от холодильной машины. В результате стационарного процесса теплообмена грунт в зоне колонки замерзает. Смежные зоны промерзания, увеличиваясь в диаметре, перекрывают друг друга, образуя льдогрунтовую стенку вокруг котлована. Расстояние между колонками зависит от гидрогеологических и температурных условий производства работ, глубины выемки и назначается в среднем от 1 до 3 м.
Рис.4. Схема замораживания грунтов:
а - план котлована с размещением замораживающих колонок; б - схема замораживающей колонки; 1 - замораживающая колонка; 2 - мерзлый грунт; 3 - талый грунт; 4 - водоупор; 5 - холодильная машина
По завершении всех строительно-монтажных работ в выемке осуществляют размораживание грунта искусственным или естественным путем.
Закрепление грунта силикатизацией производят одно- и двухрастворным способом. Оно эффективно при закреплении песчаных и лессовых грунтов. Сущность способа заключается в стабильном изменении физико-механических свойств грунта в результате химической реакции растворов, закачиваемых через инъекторы в поры грунта.
Способ смолизации заключается в нагнетании в грунт через инъекторы гелеобразующей смеси, состоящей из карбамидной смолы и растворов соляной кислоты, аммиака, хлористого аммония и др. Применяется для закрепления мелких песков - сухих и водонасыщенных.
Цементация служит для закрепления трещиноватых скальных и крупнообломочных пород, средне- и крупнозернистых песков. Сущность способа состоит в нагнетании под давлением тампонажных цементных растворов через инъекторы, установленные в пробуренные скважины.
Горячая битумизация используется как вспомогательный способ при цементации сильно трещиноватых скальных пород и больших скоростях фильтрации. Нагнетание горячего битума производят под давлением до 8,0 МПа через смонтированные в скважинах инъекторы, имеющие электрообогрев. Битум растекается из инъекторов в трещины и поры грунта, а остывая, тампонирует их.
Термическое закрепление лессовых грунтов происходит в результате обжига раскаленными газами, нагнетаемыми через скважину в поры грунта. Газы образуются при сжигании жидкого или газообразного топлива, подаваемого вместе с подогретым воздухом через жаропрочные трубы в скважину. Глубина скважины и радиус воздействия термического закрепления определяются расчетом.
Электрический и электрохимический способы основаны на явлении электроосмоса и применяются для глинистых и илистых грунтов.
Под продолжительным воздействием электрического тока грунт изменяет свойства - становится более плотным, теряет способность к пучению.
Временное крепление стенок выемок, защита откосов и уплотнение грунтов
При устройстве котлованов и траншей в стесненных условиях городской застройки, на территории действующих предприятий и в других случаях, когда не представляется возможным разрабатывать выемку с откосами, ее устраивают с вертикальными стенками.
В зависимости от вида и состояния грунта СНиП устанавливает допустимую глубину выемок с вертикальными стенками для песчаных грунтов 1 м и для глинистых до 1,5 м. При большей глубине возникает необходимость временного крепления вертикальных стенок, чтобы избежать их обрушения.
Устройство крепления вертикальных стенок выемок требует значительных трудозатрат и усложняет как разработку грунта, так и выполнение строительно-монтажных работ в траншее или котловане, поэтому устройство выемки с вертикальными стенками, способ и тип крепления должны иметь технико-экономическое обоснование и применяться, когда невозможно выполнить откосы или прокладку подземных коммуникаций другими способами.
Выемки, разрабатываемые в сложных гидрогеологических условиях, крепят сплошным ограждением из деревянного или металлического шпунта, который забивают по периметру выемки до начала разработки грунта.
В зависимости от условий производства работ и назначения выемки применяют различные типы крепления стенок (рис.5). Крепление распорного (горизонтально-рамного) типа наиболее простое в исполнении и применяется, как правило, при устройстве траншей глубиной до 4 м в сухих или незначительной влажности грунтах.
Рис.5. Схемы крепления вертикальных стенок выемок:
а - стоечно-распорное; б - консольное; в - консольно-распорное; г - анкерное; д - подкосное; 1 - щиты (доски); 2 - стойка; 3 - распорка
Крепление консольного типа состоит из стоек - свай, защемленных нижней частью в грунте на 2-3,5 м глубже дна выемки. Они служат опорами для щитов (досок, брусьев), непосредственно воспринимающих давление грунта. Крепление консольного типа целесообразно при глубине выемки до 5 м.
В траншеях значительной глубины используют консольно-распорное крепление, отличающееся от консольного тем, что между стойками перпендикулярно оси траншеи устанавливаются распорки. В результате снижается изгибающий момент, воспринимаемый стойкой.
Для крепления стенок глубоких котлованов и траншей большой ширины, когда установка распорок затруднена, устраивают консольно-анкерное крепление.
При отрывке котлованов может применяться подкосное крепление вертикальных стенок. Оно состоит из щитов или досок, прижатых к грунту стойками, установленными на дно котлована и раскрепленными подкосами и упорами. Использование этого крепления ограниченно, так как подкосы и упоры, расположенные в котловане, мешают производству работ.
Крепление вертикальных стенок траншей глубиной до 3 м следует выполнять из индустриальных конструкций. В практике строительства инженерных коммуникаций используются трубчатые распорные, шарнирно-винтовые, объемные крепления и др. ^ В состав их входят инвентарные деревянные щиты, металлические стойки и телескопические распорки, позволяющие легко изменять габариты крепления в зависимости от размеров траншей. Объемное крепление представляет собой пространственную конструкцию, предварительно полностью собранную и устанавливаемую краном в траншею. Оно может по мере надобности переставляться по фронту работ. Индустриальные конструкции крепления имеют небольшую массу и малую трудоемкость при монтаже и демонтаже.
Тип крепления вертикальных стенок выемок определяется проектом производства работ на основе анализа технико-экономических показателей вариантов. Крепление должно быть индустриальным, надежно обеспечивать безопасность производства работ, не стеснять рабочее место, выполняться с минимальными материалоемкостью и трудозатратами.
Защита откосов постоянных выемок и насыпей от размыва поверхностным стоком атмосферных осадков осуществляется тщательной планировкой поверхности откосов с последующим их укреплением.
Укрепление откосов может производиться сплошной укладкой дерна, или укладкой его в клетку, т.е. пересекающимися полосами, промежутки между ними засыпают растительным грунтом с посевом многолетних трав. В местах концентрации стока (сопряжение насыпи с мостами, путепроводами и т.д.) откосы могут защищаться бетонными или железобетонными плитами и устройством водоотводных лотков.
Необходимость уплотнения грунтов возникает при возведении постоянных земляных сооружений, планировке площадок, обратной засыпке траншей и пазух котлованов, подсыпке под полы промышленных зданий и т.д.
В результате уплотнения грунта увеличиваются его плотность, модуль деформации, сопротивление сдвигу, водонепроницаемость и существенно уменьшаются осадки грунта в процессе эксплуатации сооружений.
Уплотнение грунта производится послойно механизированным способом. Толщина слоя зависит от вида грунта и типа грунтоуплотняющих средств. Наиболее эффективно уплотнять связные грунты укаткой и трамбованием, а несвязные - вибрационным и комбинированным воздействием (виброукаткой, вибротрамбованием и т.д.).
Укатку производят катками с гладкими вальцами, кулачковыми и пневмоколесными катками. Прицепные, полуприцепные и самоходные пневмоколесные катки широко используются для уплотнения различных грунтов слоями небольшой толщины (до 0,6 м).
Для уплотнения трамбованием используют трамбующие плиты, подвешенные к стреле экскаватора, различные трамбующие машины и механические трамбовки. Этим способом уплотняют, как правило, связные грунты. Уплотнение достигается многократными ударами трамбующей плиты или башмака по слою отсыпанного грунта. Трамбующие плиты и машины используют для уплотнения грунта в насыпях при максимальной толщине слоя до 0,8-1,5 м. Механическими трамбовками уплотняют грунт толщиной слоя до 0,5 м в непосредственной близи подземных коммуникаций и конструкций, в труднодоступных местах и стесненных условиях при обратной засыпке пазух, подсыпке под полы и т.д. Самоходные вибротрамбовки могут уплотнять как связные, так и несвязные грунты.
Вибрационным способом целесообразно уплотнять несвязные грунты, в которых вибрация вызывает резкое снижение сил внутреннего трения между частицами грунта.
Для уплотнения грунтов этим способом применяют виброплиты прицепные, самопередвигающиеся и подвесные. Толщина уплотняемого слоя от 0,6 до 2,0 м в зависимости от массы виброплиты, частоты и амплитуды колебаний.
С целью повышения эффективности уплотнения грунтов используют комбинированные воздействия: укатки и вибрации (виброкатки), удара и вибрации (вибротрамбовки) или увлажнения и вибрации для глубинного уплотнения (гидровибрационные установки).
Интенсивность процесса и степень уплотнения грунтов в значительной мере зависят от его влажности. Оптимальная влажность грунта - это влажность, при которой максимальная плотность грунта достигается с наименьшими энергозатратами. Она составляет для несвязных грунтов 8-12% и для связных- 19-23%.
В процессе производства работ контролируют степень уплотнения грунта. Контроль плотности может осуществляться определением объемной массы грунта в пробах, взятых из возводимой насыпи, плотномерами, погруженными в грунт, и другими приборами с использованием радиоизлучений, ультразвука и др.