
- •Устойчивость систем сау
- •Если свободная составляющая неограниченно возрастает, т.Е. Если
- •Алгебраические критерии устойчивости
- •Критерий Гурвица. Автоматическая система, описываемая характеристическим уравнением
- •Критерий Рауса.
- •Частотные критерии устойчивости
- •Принцип аргумента. Рассмотрим уравнение:
- •Критерий Михайлова Рассмотрим характеристическое уравнение системы
- •Критерий Найквиста
- •У замкнутой системы изменение аргумента при изменении частоты от 0 до :
- •Система неустойчивая.
Устойчивость систем сау
Устойчивость автоматической системы – это свойство системы возвращаться в исходное состояние равновесия после прекращения воздействия, выведшего систему из этого состояния. Неустойчивая система не возвращается в исходное состояние, а непрерывно удаляется от него.
Здесь, в рисунке а), А0 – невозмущенное состояние, А2 – возмущенное состояние; на рисунке б) изображено неустойчивое состояние системы, а на рисунке в) – ее нейтральное состояние. По аналогии с состояниями можно ввести понятие возмущенного и невозмущенного движения.
Свободное движение линейной или линеаризованной системы описывается однородным дифференциальным уравнением
где
- свободная составляющая выходной
величины системы.
Система является устойчивой, если свободная составляющая xc(t) переходного процесса с течением времени стремится к нулю, т.е. если
.
Такая устойчивость называется асимптотической.
Если свободная составляющая неограниченно возрастает, т.Е. Если
,
то система неустойчива.
Наконец, если свободная составляющая не стремится ни к нулю, ни к бесконечности, то система находится на границе устойчивости.
Найдем общее условие, при котором система, описываемая уравнением (*), устойчива. Решение уравнения (*) равно сумме
где Ck – постоянные, зависящие от начальных условий; pk – корни характеристического уравнения
.
Корни данного уравнения могут быть действительными (pk=k), мнимыми (pk=jk) и комплексными (pk=k± jk).
Переходная
составляющая (**) приt
стремится к нулю лишь в том случае, если
каждое слагаемое вида
.
Характер этой функции времени зависит
от вида корняpk.
Рассмотрим все возможные случаи
расположения корней pk
на комплексной плоскости (см. рис.) и
соответствующие им функции xk(t),
которые показаны внутри кругов (как на
экране осциллографа).
Рис.
1. Каждому действительному корню pk=k в решении (**) соответствует слагаемое вида
Если k<0 (кореньр1), то функция (***) приtстремится к нулю. Еслиk>0 (кореньр3), то функция (***) неограниченно возрастает. Еслиk=0 (кореньр2), то функция (***) остается постоянной.
2. Каждой паре сопряженных комплексных корней pk=k± jk в решении (**) соответствуют два слагаемых, объединенных в одно
Эта функция представляет собой синусоиду с частотой kи амплитудой, изменяющейся во времени по экспоненте. Если действительная часть двух комплексных корнейk<0 (корнир4ир5), то колебательная составляющая (****) будет затухать. Еслиk>0 (корнир8ир9), то амплитуда колебаний будет неограниченно возрастать. Наконец, еслиk=0 (корнир6ир7), т.е. если оба сопряженных корня – мнимые (pk=+ jk, pk+1=- jk), тоxk(t)представляет собой незатухающую синусоиду с частотойk.
Общее условие устойчивости:
Для устойчивости линейной автоматической системы управления необходимо и достаточно, чтобы действительные части всех корней характеристического уравнения системы были отрицательны.
При этом действительные корни рассматриваются как частный случай комплексных корней, у которых мнимая часть равна нулю. Если хотя бы один корень имеет положительную действительную часть, то система будет неустойчивой.
Устойчивость системы зависит только от вида корней характеристического уравнения и не зависит от характера внешних воздействий на систему. Устойчивость есть внутреннее свойство системы, присущее ей вне зависимости от внешних условий.
Используя геометрическое представление корней на комплексной плоскости (см. рис.) в виде векторов или точек, можно дать вторую формулировку общего условия устойчивости (эквивалентную основной):
Для устойчивости линейной системы необходимо и достаточно, чтобы все корни характеристического уравнения находились в левой полуплоскости. Если хотя бы один корень находится в правой полуплоскости, то система будет неустойчивой.
Мнимая
ось j
является границей устойчивости в
плоскости корней. Если характеристическое
уравнение имеет одну пару чисто мнимых
корней (pk=+jk,
pk+1=-jk),
а все остальные корни находятся в левой
полуплоскости, то в системе устанавливаются
незатухающие гармонические колебания
с круговой частотой
.
В этом случае говорят, что система
находится наколебательной
границе устойчивости.
Точка =0 на мнимой оси соответствует так называемому нулевому корню. Если уравнение имеет один нулевой корень, то система находится на апериодической границе устойчивости. Если таких корня два, то система неустойчива.