
- •Электрический привод
- •Пермь 2010 Содержание
- •Введение
- •Механика электропровода
- •1.1 Кинематическая схема электропривода. Силы и моменты, действующие в системе электропривода
- •1.2 Механические характеристики производственных механизмов при типовых нагрузках Для теории и практики электропривода большое значение имеют понятия механической характеристики рабочей машины.
- •1.3 ПриведениеJ, МсFc,mи с – жесткостей упругих элементов к расчетной скорости и расчетные схемы механической части электропривода.
- •1.4 Уравнение движения и режимы работы электропривода как динамической системы.
- •Понятие об электромеханических и механических характеристиках и режимах работы двигателей.
- •Электромеханические свойства электродвигателей
- •3.1 Естественные и искусственные электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения
- •3.2 Тормозные режимы двигателя независимого возбуждения Торможение с рекуперацией энергии в сеть
- •Торможение противовключением
- •Динамическое торможение
- •3.3 Расчет механических характеристик двигателя независимого возбуждения
- •3.4 Расчет сопротивлений для якорной цепи днв
- •3.5 Естественные и искусственные механические характеристики двигателя постоянного тока последовательного возбуждения (дпв)
- •3.6 Тормозные режимы двигателей последовательного возбуждения
- •3.7 Расчет искусственных электромеханических и механических характеристик дпв.
- •3.8 Расчет пусковых сопротивлений для якорной цепи дпв
- •3.9 Электромеханические свойства двигателя постоянного тока смешанного возбуждения (дсв)
- •3.10 Расчет тормозных сопротивлений для двигателей постоянного тока
- •3.11 Естественные механическая и электромеханическая характеристика асинхронного двигателя (ад)
- •3.12 Искусственные механические характеристики ад при изменении параметров цепей двигателя и питающей сети.
- •3.13 Тормозные режимы асинхронного двигателя
- •3.14 Расчет естественной и искусственных механических характеристик ад
- •3.15 Расчет сопротивлений для роторной цепи ад
- •3.16 Электромеханические свойства синхронного двигателя сд
- •4. Переходные режимы электроприводов
- •4.1 Общая характеристика переходных режимов электроприводов, их классификация и понятие об оптимальных переходных процессах
- •4.6 Графический метод интегрирования уравнения движения (метод пропорций)
- •4.8 Переходный процесс в электроприводе с двигателем независимого возбуждения при изменении магнитного потока
- •5. Регулирование координат электропривода
- •5.1 Требования к координатам электропривода и формированию его статических и динамических характеристик
- •5.2 Основные показатели способов регулирования координат электропривода
- •5.3 Системы управляемый преобразователь – двигатель (уп–д)
- •5.4 Система генератор–двигатель постоянного тока (г–д)
- •5.5 Расчет статических механических характеристик в системе г-д
- •5.6 Система тиристорный преобразователь – двигатель (тп–д)
- •5.7 Торможение и реверсирование двигателя в системе тп-д и статические механические характеристики реверсивного вентильного электропривода постоянного тока
- •5.8 Расчет статических механических характеристик в системе тп-д
- •5.9 Коэффициент мощности и основные технико-экономические показатели системы тп-д
- •5.10 Законы частотного регулирования асинхронными двигателями
- •5.11 Статические механические характеристики ад, при частотном управлении с компенсацией падений напряжений
- •5.12 Система пч-ад с электромашинным и статическим преобразователем частоты и основные технико-экономические показатели
- •5.13 Регулирование скорости ад в каскадных схемах. Принцип регулирования и понятие об электрическом и электромеханическом каскадах
- •5.14 Каскад с асинхронным двигателем, работающим в режиме двойного питания
- •5.15 Каскады ад с машиной постоянного тока и вентильным преобразователем
- •5.16 Регулируемый электропривод переменного тока с вентильным двигателем (вд)
- •6. Нагревание электродвигателей и основы их выбора по мощности
- •6.1 Общие сведения о нагревании двигателей и нагрузочныхдиаграммах электроприводов
- •6.2 Номинальные режимы работы электродвигателей
- •6.3 Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
- •6.4 Нагревание двигателей при кратковременном режиме работы с постоянной нагрузкой
- •6.5 Нагревание двигателей при повторно-кратковременном режиме работы
- •6.6 Предварительный выбор двигателей по мощности
- •6.7 Проверка допустимой нагрузки двигателя по методу средних потерь
- •6.8 Определение потерь и кпд двигателя при номинальной и неноминальной нагрузке
- •6.9 Проверка допустимой нагрузки двигателя по методу эквивалентного (среднеквадратичного) тока
- •6.10 Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
- •6.11 Выбор мощности двигателя для работы с длительной неизменной нагрузкой
- •6.12 Выбор мощности двигателя для кратковременного режиме работы
- •6.13 Выбор мощности двигателя для повторно-кратковременного режима работы
- •6.14 Выбор двигателей для работы в режимахS4s8 и выбор преобразователей для регулируемых электроприводов
- •6.15 Особенности выбора мощности ад с к.З. Ротором и определение допустимого числа включений их в час при повторно-кратковременном режиме работы
- •7. Энергетика электроприводов
- •7.1 Потери энергии при установившемся режиме работы нерегулируемого электропривода
- •7.2 Потери мощности и энергии в установившемся режиме регулируемого электропривода
- •7.4 Потери энергии при переходных процессах в нерегулируемом электроприводе
- •7.5 Потери энергии при переходных процессах в регулируемом электроприводе и способы уменьшения потерь энергии
- •8. Принципы автоматизации процессов
- •Использованная литература
Понятие об электромеханических и механических характеристиках и режимах работы двигателей.
Важное
значение для теории и практики
электроприводов имеют электромеханические
и механические характеристики
двигателей. Механические характеристики
двигателей в сочетании с уравнениями
движения электропривода позволяют
исследовать движение электромеханических
систем в целом. В зависимости от режима
работы электромеханические и механические
характеристики подразделяются на
статические и динамические. Статическая
механическая характеристика представляет
собой геометрическое место точек на
плоскости
,
соответствующих установившемуся режимам
работы, а динамическая характеристика
– геометрическое место точек на той же
плоскости, каждой из которых соответствует
определенный момент времени. В качестве
примера на рис. 2.1 изображены статическая
и динамическая механические характеристики
асинхронного двигателя для режима пуска
в холостую.
При
изменении нагрузки на валу двигателя
скорость его изменяется. Величиной,
характеризующей степень ее изменения,
является жесткость. Статическая жесткость
характеристики определяется как
отношение приращения момента к приращению
скорости
.
Статические характеристики двигателей имеют отрицательную жесткость, если при увеличении нагрузки скорость их уменьшается.
В динамических режимах работы электропривода жесткая и даже абсолютно жесткая статическая характеристика превращается в мягкую или имеющую переменную жесткость как видно из рис. 2.1. Поэтому для правильного суждения о жесткости характеристик двигателя или электропривода в этих режимах используется понятие динамической жесткости. Модуль динамической жесткости определяется как отношение амплитуд установившихся гармонических колебаний момента и угловой скорости относительно средних значений
при
g
0.
В заключение рассмотрим возможные режимы работы ЭМП с точки зрения направления потоков энергии и органичениях, накладываемых на протекание этих режимов.
Основным режимом работы ЭМП и двигателя является двигательный, при котором мощность, потребляемая из сети Рс, в основном преобразуется в механическую Рмех, а остальная часть Р теряется в виде тепла в обмотках и стали машины.
К тормозным, т.е. генераторным, относятся режимы:
а) рекуперативное торможение;
б) противовключение;
в) динамическое торможение.
В режиме рекуперативного торможения механическая мощность Рмех, поступающая с вала механизма, преобразуется в электрическую РС и отдается в сеть за исключением потерь в обмотках и стали.
В режиме противовключения двигатель потребляет мощность Рс из сети и с вала механизма Рмех и вся она теряется в виде тепла в обмотках и стали.
В режиме динамического торможения двигатель отключен от сети, работает автономным генератором. Вся механическая мощность, поступающая с вала механизма, преобразуется в электрическую и рассеивается в виде тепла в обмотках и стали машины.
Процесс электромеханического преобразования энергии сопровождаются потерями энергии, вызывающими нагрев машины. Чем больше ее нагрузка, тем больше тепла выделяется в машине, тем выше температура ее элементов. Максимально допустимая t двигателя ограничивается максимально допустимым нагревом изоляции, т.к. превышение допустимой t резко сокращает срок службы изоляции. Отсюда вытекает ограничение по нагреву. Однако ограничение по нагреву не исключает возможность кратковременной перенагрузки двигателя, т.к. за время такой нагрузки t двигателя заметно измениться не сможет.
Различают,
также перегрузочную способность
двигателя по току
и по моменту
.
Перегрузочная способность двигателей постоянного тока ограничивается условиями коммутации, а двигателей переменного тока – наибольшим моментом, который машина способа развить при номинальном напряжении и номинальном возбуждении (для синхронных двигателей).
Перегрузочная способность двигателей постоянного тока по моменту м не должна быть меньше 2,5. Для крановых и металлургических двигателей постоянного тока в зависимости от мощности и способа возбуждения составляет м=2,55,5.
Перегрузочная способность двигателей постоянного тока по току составляет I=1,53,6, а для двигателей с гладким якорем I=68.
Перегрузочная способность асинхронных двигателей (АД) длительного режима по моменту М=1,72,2, а для крановых и металлургических двигателей она более 2,3. Перегрузочная способность АД и синхронных двигателей по току не нормируется.
Перегрузочная способность синхронных двигателей (мгновенная) по моменту М=2,53, а за счет форсировки возбуждения может быть доведена до 3,54.