
- •Электрический привод
- •Пермь 2010 Содержание
- •Введение
- •Механика электропровода
- •1.1 Кинематическая схема электропривода. Силы и моменты, действующие в системе электропривода
- •1.2 Механические характеристики производственных механизмов при типовых нагрузках Для теории и практики электропривода большое значение имеют понятия механической характеристики рабочей машины.
- •1.3 ПриведениеJ, МсFc,mи с – жесткостей упругих элементов к расчетной скорости и расчетные схемы механической части электропривода.
- •1.4 Уравнение движения и режимы работы электропривода как динамической системы.
- •Понятие об электромеханических и механических характеристиках и режимах работы двигателей.
- •Электромеханические свойства электродвигателей
- •3.1 Естественные и искусственные электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения
- •3.2 Тормозные режимы двигателя независимого возбуждения Торможение с рекуперацией энергии в сеть
- •Торможение противовключением
- •Динамическое торможение
- •3.3 Расчет механических характеристик двигателя независимого возбуждения
- •3.4 Расчет сопротивлений для якорной цепи днв
- •3.5 Естественные и искусственные механические характеристики двигателя постоянного тока последовательного возбуждения (дпв)
- •3.6 Тормозные режимы двигателей последовательного возбуждения
- •3.7 Расчет искусственных электромеханических и механических характеристик дпв.
- •3.8 Расчет пусковых сопротивлений для якорной цепи дпв
- •3.9 Электромеханические свойства двигателя постоянного тока смешанного возбуждения (дсв)
- •3.10 Расчет тормозных сопротивлений для двигателей постоянного тока
- •3.11 Естественные механическая и электромеханическая характеристика асинхронного двигателя (ад)
- •3.12 Искусственные механические характеристики ад при изменении параметров цепей двигателя и питающей сети.
- •3.13 Тормозные режимы асинхронного двигателя
- •3.14 Расчет естественной и искусственных механических характеристик ад
- •3.15 Расчет сопротивлений для роторной цепи ад
- •3.16 Электромеханические свойства синхронного двигателя сд
- •4. Переходные режимы электроприводов
- •4.1 Общая характеристика переходных режимов электроприводов, их классификация и понятие об оптимальных переходных процессах
- •4.6 Графический метод интегрирования уравнения движения (метод пропорций)
- •4.8 Переходный процесс в электроприводе с двигателем независимого возбуждения при изменении магнитного потока
- •5. Регулирование координат электропривода
- •5.1 Требования к координатам электропривода и формированию его статических и динамических характеристик
- •5.2 Основные показатели способов регулирования координат электропривода
- •5.3 Системы управляемый преобразователь – двигатель (уп–д)
- •5.4 Система генератор–двигатель постоянного тока (г–д)
- •5.5 Расчет статических механических характеристик в системе г-д
- •5.6 Система тиристорный преобразователь – двигатель (тп–д)
- •5.7 Торможение и реверсирование двигателя в системе тп-д и статические механические характеристики реверсивного вентильного электропривода постоянного тока
- •5.8 Расчет статических механических характеристик в системе тп-д
- •5.9 Коэффициент мощности и основные технико-экономические показатели системы тп-д
- •5.10 Законы частотного регулирования асинхронными двигателями
- •5.11 Статические механические характеристики ад, при частотном управлении с компенсацией падений напряжений
- •5.12 Система пч-ад с электромашинным и статическим преобразователем частоты и основные технико-экономические показатели
- •5.13 Регулирование скорости ад в каскадных схемах. Принцип регулирования и понятие об электрическом и электромеханическом каскадах
- •5.14 Каскад с асинхронным двигателем, работающим в режиме двойного питания
- •5.15 Каскады ад с машиной постоянного тока и вентильным преобразователем
- •5.16 Регулируемый электропривод переменного тока с вентильным двигателем (вд)
- •6. Нагревание электродвигателей и основы их выбора по мощности
- •6.1 Общие сведения о нагревании двигателей и нагрузочныхдиаграммах электроприводов
- •6.2 Номинальные режимы работы электродвигателей
- •6.3 Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
- •6.4 Нагревание двигателей при кратковременном режиме работы с постоянной нагрузкой
- •6.5 Нагревание двигателей при повторно-кратковременном режиме работы
- •6.6 Предварительный выбор двигателей по мощности
- •6.7 Проверка допустимой нагрузки двигателя по методу средних потерь
- •6.8 Определение потерь и кпд двигателя при номинальной и неноминальной нагрузке
- •6.9 Проверка допустимой нагрузки двигателя по методу эквивалентного (среднеквадратичного) тока
- •6.10 Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
- •6.11 Выбор мощности двигателя для работы с длительной неизменной нагрузкой
- •6.12 Выбор мощности двигателя для кратковременного режиме работы
- •6.13 Выбор мощности двигателя для повторно-кратковременного режима работы
- •6.14 Выбор двигателей для работы в режимахS4s8 и выбор преобразователей для регулируемых электроприводов
- •6.15 Особенности выбора мощности ад с к.З. Ротором и определение допустимого числа включений их в час при повторно-кратковременном режиме работы
- •7. Энергетика электроприводов
- •7.1 Потери энергии при установившемся режиме работы нерегулируемого электропривода
- •7.2 Потери мощности и энергии в установившемся режиме регулируемого электропривода
- •7.4 Потери энергии при переходных процессах в нерегулируемом электроприводе
- •7.5 Потери энергии при переходных процессах в регулируемом электроприводе и способы уменьшения потерь энергии
- •8. Принципы автоматизации процессов
- •Использованная литература
6.10 Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
Метод
эквивалентного момента основан на том,
что в двигателях, работающих при Ф=const
момент пропорционален току. Так, в случае
двигателей постоянного тока с независимым
возбуждением
.
С
некоторыми допущениями он может быть
использован и для проверки мощности
предварительно выбранного АД, когда он
должен работать при нагрузках, близких
к номинальной. Момент АД
.
При тех реальных нагрузках, при которых обычно работает АД, cos2 изменяется не столь значительно, и с некоторой погрешностью его можно считать постоянным. Т.к. при U1=const и f1=const поток АД постоянен, можно ститать, что и MI2.
Умножая обе части выражения для Iэ на некоторый коэффициент пропорциональности, получим
.
Условие правильности предварительно выбранного двигателя: МэМн.
В случае, когда Фconst (например, при ослаблении его у ДНВ), этим методом непосредственно пользоваться нельзя, но если внести поправки в нагрузочную диаграмму электропривода, то ординаты графика момента можно сделать пропорциональными току и методом эквивалентного момента можно будет пользоваться.
Внесение поправок рассмотрим на примере трехпериодного графика (рис. 6.10.1). В установившемся режиме двигатель должен работать с ослабленным потоком Фосл со скоростью максосн. На участках диаграммы, где двигатель работает с Ф=Фн, ординаты графика момента пропорциональны току (до точки А). При осн эти ординаты не пропорциональны току (от точки А до точки В).
Если при Ф=Фн двигатель, развивая момент М, потребляет из сети ток Iя, то при ослабленном потоке Фосл, развивая тот же момент, он будет потреблять больший ток Iя. Таким образом на участках работы с Фосл график момента не отражает картины нагрева двигателя.
Исходя из равенства моментов, при работе Фн и Фосл, можно определить величину поправки, которую нужно ввести в график момента, чтобы его ординаты были пропорциональны току
Отношение
потоков можно заменить отношением
скоростей. Пренебрегая падением
напряжения в цепи якоря, можно считать
.
Следовательно,
и
Умножив
ординаты графика момента на участке
работы двигателя с ослабленным потоком
(от точки А до точки В) на отношение
,
где
- фактическая скорость при ослабленном
потоке, получим новый график, ординаты
которого пропорциональны току.
Следовательно, имея новый график
зависимости M=f(t)
для проверки мощности предварительно
выбранного двигателя можно использовать
метод Мэ.
В электроприводах, работающих с постоянной или мало меняющейся скоростью, мощность Р=М· будет пропорциональна моменту. В этом случае для проверки правильности выбора мощности двигателя можно находить значение эквивалентной мощности Рэ, пользуясь зависимостью P=f(t), полученной расчетным или экспериментальным путем. При этом должно соблюдаться условие:
.
Область применения этого метода ограничивается случаями работы ДНВ, АД и СД при =const.
6.11 Выбор мощности двигателя для работы с длительной неизменной нагрузкой
К механизмам, работающим длительно с практически неизменной нагрузкой, относятся многие вентиляторы, компрессоры, центробежные насосы, дымососы, транспортеры и т.п. Поскольку эти механизмы пускаются редко, влияние пускового режима на процесс нагрева двигателя ничтожно. Лишь в некоторых случаях приходится проверять достаточность развиваемого двигателем пускового момента, имея в виду, что некоторые механизмы имеют повышенное сопротивление трения и момент трогания.
В таком режиме температура перегрева двигателя достигает установившегося значения уст и двигатель, выбранный правильно, может работать сколь угодно долго без перегрева сверх допустимого предела, при условии правильности эксплуатации и температуре окружающей среды не превышающей 40°С.
Выбор
двигателя при этом режиме сводится к
тому, что если известна мощность
статической нагрузки Рc,
то нет необходимости проверять двигатель
по нагреву или перегрузке во время
работы. Достаточно выбрать двигатель
с номинальной мощностью
.
При этом можно быть уверенным, что она
является наибольшей допустимой, т.к.
завод-изготовитель произвел уже все
расчеты и испытания, исходя из максимального
использования материалов при номинальной
мощности двигателя.
В тех случаях, когда нагрузка (Рc механизма) заранее неизвестна, она определяется по формулам с использованием коэффициентов, полученных из многочисленных опытов, а в некоторых случаях, например, для малоизученных или новых механизмов, ее приходится определять, прибегая к снятию нагрузочных диаграмм самопишущими приборами на имеющихся в эксплуатации аналогичных установках.
Так, расчетная мощность для насосов, вентиляторов, компрессоров, конвейеров (транспортеров), тележек может быть вычислена по следующим формулам:
,
где
V – производительность м3/с;
Н – для насосов – высота напора, равная высоте всасывания и нагнетания, м; для вентиляторов и компрессоров – давление газа кгс/м2 и кгс/см2;
н, в, к, пер - КПД насоса, вентилятора, компрессора, передачи (редуктора);
Аи, Аа – соответственно удельная работа изотермического и адиабатического сжатия (дается в справочниках)
F – тяговое усилие, кгс;
G – вес тележки с грузом, т;
V - скорость, м/с;
KT – коэффициент, равный 4–6 для подшипников качения и 68 для подшипников скольжения;
7,5 – удельное тяговое усилие, кгс/тс.
Мощность выбираемого двигателя должна содержать запас по сравнению с расчетными величинами не менее (510)% с увеличением до (3040)% для двигателей мощностью до 5кВт и (70100)% до 1кВт.
В тех случаях, когда температура окружающей среды ниже 40°С, двигатель может быть загружен выше своей номинальной мощности, а если выше 40°С – его следует недогружать.
Двигатель правильно выбранной мощности при номинальной нагрузке и t°о.ср=40°С в двигательном режиме должен быть нагрет до доп
,
где
.
Если
tок.ср
отличается от 40°С на ∆,
то для сохранения той же предельно
допустимой температуры перегрева доп,
допустимое ее превышение должно быть
уменьшено или увеличено на ∆.
Для этого ток двигателя должен иметь
значение
и переменные потери будут
.
Выражение для установившейся температурыуст
при этом будет таким:
,
где
∆ будет со знаком ''+'' при t°о.ср >40°С и со знаком ''-'' при t°о.ср <40°С.
Разделив
это выражение на первое, получим
,
откуда допустимая степень загрузки
двигателя приt°о.ср
40°С
,
т.е. Рдоп=Рн·х.
При
х=0, т.е. двигатель не может нести никакой
нагрузки, а может работать лишь вхолостую.