
- •Электрический привод
- •Пермь 2010 Содержание
- •Введение
- •Механика электропровода
- •1.1 Кинематическая схема электропривода. Силы и моменты, действующие в системе электропривода
- •1.2 Механические характеристики производственных механизмов при типовых нагрузках Для теории и практики электропривода большое значение имеют понятия механической характеристики рабочей машины.
- •1.3 ПриведениеJ, МсFc,mи с – жесткостей упругих элементов к расчетной скорости и расчетные схемы механической части электропривода.
- •1.4 Уравнение движения и режимы работы электропривода как динамической системы.
- •Понятие об электромеханических и механических характеристиках и режимах работы двигателей.
- •Электромеханические свойства электродвигателей
- •3.1 Естественные и искусственные электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения
- •3.2 Тормозные режимы двигателя независимого возбуждения Торможение с рекуперацией энергии в сеть
- •Торможение противовключением
- •Динамическое торможение
- •3.3 Расчет механических характеристик двигателя независимого возбуждения
- •3.4 Расчет сопротивлений для якорной цепи днв
- •3.5 Естественные и искусственные механические характеристики двигателя постоянного тока последовательного возбуждения (дпв)
- •3.6 Тормозные режимы двигателей последовательного возбуждения
- •3.7 Расчет искусственных электромеханических и механических характеристик дпв.
- •3.8 Расчет пусковых сопротивлений для якорной цепи дпв
- •3.9 Электромеханические свойства двигателя постоянного тока смешанного возбуждения (дсв)
- •3.10 Расчет тормозных сопротивлений для двигателей постоянного тока
- •3.11 Естественные механическая и электромеханическая характеристика асинхронного двигателя (ад)
- •3.12 Искусственные механические характеристики ад при изменении параметров цепей двигателя и питающей сети.
- •3.13 Тормозные режимы асинхронного двигателя
- •3.14 Расчет естественной и искусственных механических характеристик ад
- •3.15 Расчет сопротивлений для роторной цепи ад
- •3.16 Электромеханические свойства синхронного двигателя сд
- •4. Переходные режимы электроприводов
- •4.1 Общая характеристика переходных режимов электроприводов, их классификация и понятие об оптимальных переходных процессах
- •4.6 Графический метод интегрирования уравнения движения (метод пропорций)
- •4.8 Переходный процесс в электроприводе с двигателем независимого возбуждения при изменении магнитного потока
- •5. Регулирование координат электропривода
- •5.1 Требования к координатам электропривода и формированию его статических и динамических характеристик
- •5.2 Основные показатели способов регулирования координат электропривода
- •5.3 Системы управляемый преобразователь – двигатель (уп–д)
- •5.4 Система генератор–двигатель постоянного тока (г–д)
- •5.5 Расчет статических механических характеристик в системе г-д
- •5.6 Система тиристорный преобразователь – двигатель (тп–д)
- •5.7 Торможение и реверсирование двигателя в системе тп-д и статические механические характеристики реверсивного вентильного электропривода постоянного тока
- •5.8 Расчет статических механических характеристик в системе тп-д
- •5.9 Коэффициент мощности и основные технико-экономические показатели системы тп-д
- •5.10 Законы частотного регулирования асинхронными двигателями
- •5.11 Статические механические характеристики ад, при частотном управлении с компенсацией падений напряжений
- •5.12 Система пч-ад с электромашинным и статическим преобразователем частоты и основные технико-экономические показатели
- •5.13 Регулирование скорости ад в каскадных схемах. Принцип регулирования и понятие об электрическом и электромеханическом каскадах
- •5.14 Каскад с асинхронным двигателем, работающим в режиме двойного питания
- •5.15 Каскады ад с машиной постоянного тока и вентильным преобразователем
- •5.16 Регулируемый электропривод переменного тока с вентильным двигателем (вд)
- •6. Нагревание электродвигателей и основы их выбора по мощности
- •6.1 Общие сведения о нагревании двигателей и нагрузочныхдиаграммах электроприводов
- •6.2 Номинальные режимы работы электродвигателей
- •6.3 Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
- •6.4 Нагревание двигателей при кратковременном режиме работы с постоянной нагрузкой
- •6.5 Нагревание двигателей при повторно-кратковременном режиме работы
- •6.6 Предварительный выбор двигателей по мощности
- •6.7 Проверка допустимой нагрузки двигателя по методу средних потерь
- •6.8 Определение потерь и кпд двигателя при номинальной и неноминальной нагрузке
- •6.9 Проверка допустимой нагрузки двигателя по методу эквивалентного (среднеквадратичного) тока
- •6.10 Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
- •6.11 Выбор мощности двигателя для работы с длительной неизменной нагрузкой
- •6.12 Выбор мощности двигателя для кратковременного режиме работы
- •6.13 Выбор мощности двигателя для повторно-кратковременного режима работы
- •6.14 Выбор двигателей для работы в режимахS4s8 и выбор преобразователей для регулируемых электроприводов
- •6.15 Особенности выбора мощности ад с к.З. Ротором и определение допустимого числа включений их в час при повторно-кратковременном режиме работы
- •7. Энергетика электроприводов
- •7.1 Потери энергии при установившемся режиме работы нерегулируемого электропривода
- •7.2 Потери мощности и энергии в установившемся режиме регулируемого электропривода
- •7.4 Потери энергии при переходных процессах в нерегулируемом электроприводе
- •7.5 Потери энергии при переходных процессах в регулируемом электроприводе и способы уменьшения потерь энергии
- •8. Принципы автоматизации процессов
- •Использованная литература
6.8 Определение потерь и кпд двигателя при номинальной и неноминальной нагрузке
Полные номинальные потри мощности
,
где
- коэффициент потерь.
Постоянные потери
Полные потери при неноминальной нагрузке
.
Здесь х – коэффициент загрузки двигателя по току или мощности. КПД двигателя при нагрузке, отличающейся от номинальной:
6.9 Проверка допустимой нагрузки двигателя по методу эквивалентного (среднеквадратичного) тока
Суть этого метода основана на том, что действительно протекающий в двигателе и изменяющийся по величине ток заменяется в расчетах некоторым постоянным по величине эквивалентным током IЭ, вызывающим в двигателе те же потери, что и действительный ток. Величина Iэ определяется на основе следующего:
При работе двигателя по некоторому графику нагрузки потери на каждом отдельном участке можно выразить в виде суммы постоянных и переменных потерь, если сделать допущение, что ток и потери изменяются ступенями, оставаясь неизменными в пределах каждой ступени (в действительности кривая тока I=f(t) не имеет ступенчатого характера). Переменные потери пропорциональны квадрату тока главной цепи – тока якоря для машин постоянного тока и тока ротора для АД (для СД – тока статора). Т.о.
,
где
R – учитывает сопротивление обмоток главной цепи.
Подставляя
значения отдельных составляющих потерь
в выражение для ∆Pср
и представляя средние потери в двигателе
как
,
получим
Отсюда после сокращений и преобразований находим IЭ
.
Здесь
в знаменателе время всего рабочего
цикла с учетом пауз. Условие проверки
сводится к сравнению Iэ
с номинальным током предварительно
выбранного двигателя, т.е. Iэ
Iн.
Двигатель дополнительно нужно проверить
по условию допустимой перегрузки, т.е.
убедиться, что
.
Если это последнее условие не выполняется, необходимо выбрать двигатель большей мощности, руководствуясь при этом уже не условиями нагрева, а перегрузочной способностью двигателя.
Следует иметь в виду, что при выводе выражения для IЭ переменные потери принимались пропорциональными квадрату главного тока двигателя. Это положение справедливо лишь в том случае, если в течение рабочего цикла нет подключения главной цепи, а АД с к.з. ротором, имеющие двойную беличью клетку либо глубокие пазы, работают примерно при постоянной скорости. Кроме того этот метод не учитывает возможные изменения постоянных потерь при изменении скорости в широких пределах. Тем не менее, это метод может использоваться для проверки по условиям нагрева всех типов предварительно выбранных двигателей с достаточной точностью.
В случаях, когда постоянная нагрева двигателя ТН не постоянна и цикл содержит периоды работы с переменной скоростью (пониженной), а также паузы, необходимо учитывать влияние ухудшенных условий охлаждения. Эквивалентный ток в этом случае (применительно к трехпериодной тахограмме) определяется по формуле
.
При резких изменениях тока кривая I=f(t) при расчетах заменяется не ступенчатой, как рассмотрено выше, во избежание значительных погрешностей, а ломанной линией, близко совпадающей с реальной кривой изменения тока, и вычисляются эквивалентные токи отдельных участков. В этом случае площадь графика, ограниченная такой ломаной линией, разбивается на ряд фигур (см. рис. 6.9.1), имеющих форму треугольника, прямоугольника и трапеции.
Найдем, например, эквивалентное значение тока на линейном участке длительностью t1 (площадь участка имеет форму треугольника). На нем ток изменяется по закону
,
где
.
Эквивалентный ток на этом участке:
-
расчет выполняется для треугольника.
На участке длительностью, например, t3 имеющем форму трапеции аналогично можно получить выражение
-
расчет выполняется для трапеции.
На участках, имеющих форму прямоугольника (длительностью t4, t6), эквивалентный ток равен действительному току. Используя полученные зависимости, определяется результирующий эквивалентный ток, который затем сравнивается с номинальным током предварительно выбранного двигателя и делается заключение о возможности его применения, т.е. IЭ≤IН
-
расчет выполняется для результирующего
эквивалентного тока.
Метод эквивалентного тока является предпочтительным при проверке мощности ДПТ с изменяющимся потоком, а также для АД со значительным током холостого хода (доходящим до (40÷60)% номинального тока). Его нельзя применять для проверки мощности предварительно выбранных к.з. АД с двойной беличьей клеткой или глубокими пазами ротора, т.к. сопротивление обмоток ротора у них сильно изменяется в пусковых и тормозных режимах, а также при значительных изменениях скорости.