
- •Электрический привод
- •Пермь 2010 Содержание
- •Введение
- •Механика электропровода
- •1.1 Кинематическая схема электропривода. Силы и моменты, действующие в системе электропривода
- •1.2 Механические характеристики производственных механизмов при типовых нагрузках Для теории и практики электропривода большое значение имеют понятия механической характеристики рабочей машины.
- •1.3 ПриведениеJ, МсFc,mи с – жесткостей упругих элементов к расчетной скорости и расчетные схемы механической части электропривода.
- •1.4 Уравнение движения и режимы работы электропривода как динамической системы.
- •Понятие об электромеханических и механических характеристиках и режимах работы двигателей.
- •Электромеханические свойства электродвигателей
- •3.1 Естественные и искусственные электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения
- •3.2 Тормозные режимы двигателя независимого возбуждения Торможение с рекуперацией энергии в сеть
- •Торможение противовключением
- •Динамическое торможение
- •3.3 Расчет механических характеристик двигателя независимого возбуждения
- •3.4 Расчет сопротивлений для якорной цепи днв
- •3.5 Естественные и искусственные механические характеристики двигателя постоянного тока последовательного возбуждения (дпв)
- •3.6 Тормозные режимы двигателей последовательного возбуждения
- •3.7 Расчет искусственных электромеханических и механических характеристик дпв.
- •3.8 Расчет пусковых сопротивлений для якорной цепи дпв
- •3.9 Электромеханические свойства двигателя постоянного тока смешанного возбуждения (дсв)
- •3.10 Расчет тормозных сопротивлений для двигателей постоянного тока
- •3.11 Естественные механическая и электромеханическая характеристика асинхронного двигателя (ад)
- •3.12 Искусственные механические характеристики ад при изменении параметров цепей двигателя и питающей сети.
- •3.13 Тормозные режимы асинхронного двигателя
- •3.14 Расчет естественной и искусственных механических характеристик ад
- •3.15 Расчет сопротивлений для роторной цепи ад
- •3.16 Электромеханические свойства синхронного двигателя сд
- •4. Переходные режимы электроприводов
- •4.1 Общая характеристика переходных режимов электроприводов, их классификация и понятие об оптимальных переходных процессах
- •4.6 Графический метод интегрирования уравнения движения (метод пропорций)
- •4.8 Переходный процесс в электроприводе с двигателем независимого возбуждения при изменении магнитного потока
- •5. Регулирование координат электропривода
- •5.1 Требования к координатам электропривода и формированию его статических и динамических характеристик
- •5.2 Основные показатели способов регулирования координат электропривода
- •5.3 Системы управляемый преобразователь – двигатель (уп–д)
- •5.4 Система генератор–двигатель постоянного тока (г–д)
- •5.5 Расчет статических механических характеристик в системе г-д
- •5.6 Система тиристорный преобразователь – двигатель (тп–д)
- •5.7 Торможение и реверсирование двигателя в системе тп-д и статические механические характеристики реверсивного вентильного электропривода постоянного тока
- •5.8 Расчет статических механических характеристик в системе тп-д
- •5.9 Коэффициент мощности и основные технико-экономические показатели системы тп-д
- •5.10 Законы частотного регулирования асинхронными двигателями
- •5.11 Статические механические характеристики ад, при частотном управлении с компенсацией падений напряжений
- •5.12 Система пч-ад с электромашинным и статическим преобразователем частоты и основные технико-экономические показатели
- •5.13 Регулирование скорости ад в каскадных схемах. Принцип регулирования и понятие об электрическом и электромеханическом каскадах
- •5.14 Каскад с асинхронным двигателем, работающим в режиме двойного питания
- •5.15 Каскады ад с машиной постоянного тока и вентильным преобразователем
- •5.16 Регулируемый электропривод переменного тока с вентильным двигателем (вд)
- •6. Нагревание электродвигателей и основы их выбора по мощности
- •6.1 Общие сведения о нагревании двигателей и нагрузочныхдиаграммах электроприводов
- •6.2 Номинальные режимы работы электродвигателей
- •6.3 Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
- •6.4 Нагревание двигателей при кратковременном режиме работы с постоянной нагрузкой
- •6.5 Нагревание двигателей при повторно-кратковременном режиме работы
- •6.6 Предварительный выбор двигателей по мощности
- •6.7 Проверка допустимой нагрузки двигателя по методу средних потерь
- •6.8 Определение потерь и кпд двигателя при номинальной и неноминальной нагрузке
- •6.9 Проверка допустимой нагрузки двигателя по методу эквивалентного (среднеквадратичного) тока
- •6.10 Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
- •6.11 Выбор мощности двигателя для работы с длительной неизменной нагрузкой
- •6.12 Выбор мощности двигателя для кратковременного режиме работы
- •6.13 Выбор мощности двигателя для повторно-кратковременного режима работы
- •6.14 Выбор двигателей для работы в режимахS4s8 и выбор преобразователей для регулируемых электроприводов
- •6.15 Особенности выбора мощности ад с к.З. Ротором и определение допустимого числа включений их в час при повторно-кратковременном режиме работы
- •7. Энергетика электроприводов
- •7.1 Потери энергии при установившемся режиме работы нерегулируемого электропривода
- •7.2 Потери мощности и энергии в установившемся режиме регулируемого электропривода
- •7.4 Потери энергии при переходных процессах в нерегулируемом электроприводе
- •7.5 Потери энергии при переходных процессах в регулируемом электроприводе и способы уменьшения потерь энергии
- •8. Принципы автоматизации процессов
- •Использованная литература
6.7 Проверка допустимой нагрузки двигателя по методу средних потерь
Сущность этого метода заключается в определении средних потерь ∆Pср в двигателе при заданном графике нагрузки и сравнении их с номинальными потерями предварительно выбранного двигателя. При этом предполагается, что при равенстве ∆Pср=∆Pн двигатель будет работать с допустимой для него температурой, т.к.
.
Рассмотрим процесс нагрева двигателя, работающего по некоторому циклическому графику (рис. 6.7.1). Этот график и подобные ему соответствует перемежающемуся режиму S6. По истечение большого числа циклов двигатель достигнет установившегося теплового состояния. При этом температура нагрева изоляции будет одинаковой как в начале, так и в конце цикла, а в промежутке будет изменяться по установившемуся экспоненциальному закону.
При небольшой длительности цикла по сравнению с ТН отклонение температуры за tц от начального и конечного значений будет невелико. Это дает основание максимальным значением температуры перегрева считать ее значение в начале и в конце цикла. Температура перегрева в конце последнего участка цикла может быть получена на основе записи ряда последовательных значений температур перегрева в конце отдельных участков цикла работы:
Если в этой системе исключить значения температур перегрева в конце каждого промежуточного участка при in, то температура перегрева в конце последнего участка цикла будет
Принимая
во внимание равенство температур
перегрева в начале и конце цикла
,
можно записать
Выразив
n
через средние потери ,
получим
Это
выражение говорит, что процесс нагрева
двигателя при меняющейся нагрузке,
можно заменить некоторым режимом с
постоянной нагрузкой, создающим тот же
нагрев. Для определения ∆Pср,
соответствующих длительному режиму с
постоянной нагрузкой, разложим все
экспоненциальные функции в ряд Маклорена
().
Пренебрегая всеми членами ряда кроме
первых двух, получим
.
Предполагая, что двигатель работает с постоянной скоростью, следовательно, неизменными А и ТН, получим
.
Критерием правильности выбора является ∆Pср∆Pн.
В случае существенного расхождения в величинах ∆Pср и ∆Pн, необходимо выбрать двигатель больший по мощности и выполнить все расчеты заново.
Условие ∆Pср∆Pн справедливо лишь в случае, когда двигатель должен работать при температуре окружающей среды +40°С. Если она отличается от +40°С, условие правильности выбранного двигателя будет таким:
.
Выражение для ∆Pср справедливо для проверки правильности выбора двигателей, имеющих независимую вентиляцию и с самовентиляцией, работающих с постоянной скоростью. Для двигателей с самовентиляцией и охлаждаемых естественным путем, работающих с переменной скоростью, в выражение для ∆Pср необходимо внести поправки, учитывающие ухудшение условий охлаждения при изменении скорости и во время пауз. Внесение поправок удобно рассмотреть на примере работы двигателя по трехпериодной тахограмме (рис. 6.7.2).
При
работе с установившейся скоростью
количество тепла, отдаваемого в окружающую
среду
.
Во время паузы
где
- коэффициент, учитывающий ухудшение
условий охлаждения во время паузы. Во
время переходных процессов (пуск,
торможение, изменение скорости)
теплоотдача в окружающую среду принимается
равной
,
где
Для ДПТ =0,75; для АД =0,5.
Выражение для определения средних потерь (применительно к трехпериодной тахограмме) принимает вид:
.
Метод средних потерь хотя и является одним из наиболее точных, основанных на учете среднего нагрева двигателя, не учитывает, однако, максимальную температуру при переменном графике нагрузки и не дает возможности выбрать двигатель по нагрузочной диаграмме, т.к. для определения потерь необходимо знать параметры двигателя. Кроме того, этот метод не всегда удобен вследствие трудности расчета потерь мощности. Поэтому на практике чаще применяются другие методы, хоть и менее точные.