
- •Электрический привод
- •Пермь 2010 Содержание
- •Введение
- •Механика электропровода
- •1.1 Кинематическая схема электропривода. Силы и моменты, действующие в системе электропривода
- •1.2 Механические характеристики производственных механизмов при типовых нагрузках Для теории и практики электропривода большое значение имеют понятия механической характеристики рабочей машины.
- •1.3 ПриведениеJ, МсFc,mи с – жесткостей упругих элементов к расчетной скорости и расчетные схемы механической части электропривода.
- •1.4 Уравнение движения и режимы работы электропривода как динамической системы.
- •Понятие об электромеханических и механических характеристиках и режимах работы двигателей.
- •Электромеханические свойства электродвигателей
- •3.1 Естественные и искусственные электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения
- •3.2 Тормозные режимы двигателя независимого возбуждения Торможение с рекуперацией энергии в сеть
- •Торможение противовключением
- •Динамическое торможение
- •3.3 Расчет механических характеристик двигателя независимого возбуждения
- •3.4 Расчет сопротивлений для якорной цепи днв
- •3.5 Естественные и искусственные механические характеристики двигателя постоянного тока последовательного возбуждения (дпв)
- •3.6 Тормозные режимы двигателей последовательного возбуждения
- •3.7 Расчет искусственных электромеханических и механических характеристик дпв.
- •3.8 Расчет пусковых сопротивлений для якорной цепи дпв
- •3.9 Электромеханические свойства двигателя постоянного тока смешанного возбуждения (дсв)
- •3.10 Расчет тормозных сопротивлений для двигателей постоянного тока
- •3.11 Естественные механическая и электромеханическая характеристика асинхронного двигателя (ад)
- •3.12 Искусственные механические характеристики ад при изменении параметров цепей двигателя и питающей сети.
- •3.13 Тормозные режимы асинхронного двигателя
- •3.14 Расчет естественной и искусственных механических характеристик ад
- •3.15 Расчет сопротивлений для роторной цепи ад
- •3.16 Электромеханические свойства синхронного двигателя сд
- •4. Переходные режимы электроприводов
- •4.1 Общая характеристика переходных режимов электроприводов, их классификация и понятие об оптимальных переходных процессах
- •4.6 Графический метод интегрирования уравнения движения (метод пропорций)
- •4.8 Переходный процесс в электроприводе с двигателем независимого возбуждения при изменении магнитного потока
- •5. Регулирование координат электропривода
- •5.1 Требования к координатам электропривода и формированию его статических и динамических характеристик
- •5.2 Основные показатели способов регулирования координат электропривода
- •5.3 Системы управляемый преобразователь – двигатель (уп–д)
- •5.4 Система генератор–двигатель постоянного тока (г–д)
- •5.5 Расчет статических механических характеристик в системе г-д
- •5.6 Система тиристорный преобразователь – двигатель (тп–д)
- •5.7 Торможение и реверсирование двигателя в системе тп-д и статические механические характеристики реверсивного вентильного электропривода постоянного тока
- •5.8 Расчет статических механических характеристик в системе тп-д
- •5.9 Коэффициент мощности и основные технико-экономические показатели системы тп-д
- •5.10 Законы частотного регулирования асинхронными двигателями
- •5.11 Статические механические характеристики ад, при частотном управлении с компенсацией падений напряжений
- •5.12 Система пч-ад с электромашинным и статическим преобразователем частоты и основные технико-экономические показатели
- •5.13 Регулирование скорости ад в каскадных схемах. Принцип регулирования и понятие об электрическом и электромеханическом каскадах
- •5.14 Каскад с асинхронным двигателем, работающим в режиме двойного питания
- •5.15 Каскады ад с машиной постоянного тока и вентильным преобразователем
- •5.16 Регулируемый электропривод переменного тока с вентильным двигателем (вд)
- •6. Нагревание электродвигателей и основы их выбора по мощности
- •6.1 Общие сведения о нагревании двигателей и нагрузочныхдиаграммах электроприводов
- •6.2 Номинальные режимы работы электродвигателей
- •6.3 Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
- •6.4 Нагревание двигателей при кратковременном режиме работы с постоянной нагрузкой
- •6.5 Нагревание двигателей при повторно-кратковременном режиме работы
- •6.6 Предварительный выбор двигателей по мощности
- •6.7 Проверка допустимой нагрузки двигателя по методу средних потерь
- •6.8 Определение потерь и кпд двигателя при номинальной и неноминальной нагрузке
- •6.9 Проверка допустимой нагрузки двигателя по методу эквивалентного (среднеквадратичного) тока
- •6.10 Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
- •6.11 Выбор мощности двигателя для работы с длительной неизменной нагрузкой
- •6.12 Выбор мощности двигателя для кратковременного режиме работы
- •6.13 Выбор мощности двигателя для повторно-кратковременного режима работы
- •6.14 Выбор двигателей для работы в режимахS4s8 и выбор преобразователей для регулируемых электроприводов
- •6.15 Особенности выбора мощности ад с к.З. Ротором и определение допустимого числа включений их в час при повторно-кратковременном режиме работы
- •7. Энергетика электроприводов
- •7.1 Потери энергии при установившемся режиме работы нерегулируемого электропривода
- •7.2 Потери мощности и энергии в установившемся режиме регулируемого электропривода
- •7.4 Потери энергии при переходных процессах в нерегулируемом электроприводе
- •7.5 Потери энергии при переходных процессах в регулируемом электроприводе и способы уменьшения потерь энергии
- •8. Принципы автоматизации процессов
- •Использованная литература
6.5 Нагревание двигателей при повторно-кратковременном режиме работы
Процесс установления температуры в этом режиме при идеализированной нагрузочной диаграмме можно представить в виде рис. 6.5.1. Температура обмоток двигателя изменяется по экспоненциальным кривым и достигает установившихся колебаний с небольшой амплитудой. При правильном выборе двигателя, наибольшая температура не достигнет уст, а будет стремиться к величине уст=доп.
Если в этом режиме использовать двигатель длительного режима, то за счет охлаждения во время пауз он может работать в повторно-кратковременном режиме с коэффициентом термической перегрузки
,
где
уст - наибольшая температура, которая имела бы место при длительной работе с потерями ∆Рпк повторно-кратковременного режима.
Величина может быть найдена на том основании, что для цикла работы, достаточно удаленного от начала, температура перегрева колеблется от 0 до уст. При этом для периода работы, tр можно написать
.
Температура
перегрева в конце паузы понизится до
,
если считать, что двигатель имеет
независимую вентиляцию, т.е. Т0=ТН.
Подставив значение 0
и разделив обе части равенства на у,
получим
.
Отсюда
.
Но поскольку во время паузы Т0ТН (если охлаждение двигателя естественное), то
,
отсюда
,
где
-
приведенный коэффициент продолжительности
включения.
На
основании выражения для
на рис. 5.6.2 построены кривые зависимости
от
и ε при различных значениях
.
Точки, лежащие на оси ординат, где=0
и =0,
соответствуют кратковременному режиму
работы. Все кривые сходятся в точке с
координатами =1,
=1.
Она отвечает длительному режиму работы.
Из графика видно, что при 0,6
допустимая тепловая перегрузка
незначительна, а коэффициент механической
перегрузки
будет еще меньше. Поэтому при0,6
практически можно выбирать для повторного
кратковременного режима двигатель
режима S1.
Для повторно-кратковременного режима выпускается специальная серия машин – крановые и краново-металлургические двигатели (постоянного тока серии Д и переменного тока с к.з. ротором серии MTKF, MTKH, 4АС, с фазным ротором серии МТF, MTH, 4MT).
Двигатели, предназначенные для повторно-кратковременного режима конструктивно отличаются от двигателей длительного режима тем, что при одинаковой мощности с последними они имеют меньший момент инерции, что достигается уменьшением диаметра якоря (ротора) при увеличенной длине. Это позволяет уменьшить потери энергии в переходных режимах (уменьшается запас энергии во вращающихся элементах), увеличивается быстродействие, т.к. сокращается время пуска и торможения.
В справочниках и каталогах указывается, какую мощность они могут развивать при каждой стандартной ПВ. Для двигателей постоянного тока серии Д и краново-металлургических двигателей переменного тока основной (номинальной) ПВ% является ПВ 40%. Все величины, характеризующие двигатель при основной ПВ% являются номинальными (мощность, ток, момент, скорость), а эти же величины при других ПВ% являются допустимыми по условиям нагрева.
6.6 Предварительный выбор двигателей по мощности
Для правильного выбора двигателя необходимо иметь его нагрузочную диаграмму. Но в начальной стадии проектирования электропривода проектировщику известна лишь нагрузочная диаграмма рабочей машины и ее тахограмма. Для расчета и построения нагрузочной диаграммы двигателя необходимо сделать расчет его переходных процессов, что требует знания суммарного приведенного момента инерции всей системы привод – рабочая машина.
Момент инерции системы в основном определяется моментом инерции самого двигателя. Поэтому, пока двигатель не известен, нельзя приступить к расчету переходных процессов, следовательно, нельзя построить и нагрузочную диаграмму электропривода. В связи с этим приходится выбирать двигатель, предварительно исходя из нагрузочной диаграммы рабочей машины.
Двигателю
в процессе работы приходится преодолевать
в переходных режимах не только статическую,
но и динамическую нагрузку, т.к. статическая
нагрузка при работе рабочей машины не
остается постоянной. Поэтому
среднеквадратичное значение момента
двигателя получается больше, чем среднее
значение статического момента
сопротивления, и при предварительном
выборе его номинальный момент принимается
большим, чем среднее значение Мс.
Обычно рекомендуется принимать
,
где
,
где
длительность цикла.
Могут быть использованы и такие формулы для ориентированного определения МН двигателя.
или
,
где Мс.кв
– среднеквадратичное значение
статического момента сопротивления,
определяемое по нагрузочной диаграмме
рабочей машины.
По
найденному ориентированному значению
МН
и основной скорости, которая должна
быть задана, определяется требуемая
номинальная мощность двигателя
по каталогу выбирается двигатель и
рассчитывается момент инерции системы
.
Далее проводится расчет переходных процессов и строится нагрузочная диаграмма электропривода M=f(t) или I=f(t).
Затем делается проверка выбранного двигателя по перегрузочной способности
,
где
Мс.макс - приведенный максимальный статический момент сопротивления;
М – каталожная перегрузочная способность двигателя.
После всего этого делается проверка двигателя по нагреву (определяется Мдоп или Рдоп).