
- •Электрический привод
- •Пермь 2010 Содержание
- •Введение
- •Механика электропровода
- •1.1 Кинематическая схема электропривода. Силы и моменты, действующие в системе электропривода
- •1.2 Механические характеристики производственных механизмов при типовых нагрузках Для теории и практики электропривода большое значение имеют понятия механической характеристики рабочей машины.
- •1.3 ПриведениеJ, МсFc,mи с – жесткостей упругих элементов к расчетной скорости и расчетные схемы механической части электропривода.
- •1.4 Уравнение движения и режимы работы электропривода как динамической системы.
- •Понятие об электромеханических и механических характеристиках и режимах работы двигателей.
- •Электромеханические свойства электродвигателей
- •3.1 Естественные и искусственные электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения
- •3.2 Тормозные режимы двигателя независимого возбуждения Торможение с рекуперацией энергии в сеть
- •Торможение противовключением
- •Динамическое торможение
- •3.3 Расчет механических характеристик двигателя независимого возбуждения
- •3.4 Расчет сопротивлений для якорной цепи днв
- •3.5 Естественные и искусственные механические характеристики двигателя постоянного тока последовательного возбуждения (дпв)
- •3.6 Тормозные режимы двигателей последовательного возбуждения
- •3.7 Расчет искусственных электромеханических и механических характеристик дпв.
- •3.8 Расчет пусковых сопротивлений для якорной цепи дпв
- •3.9 Электромеханические свойства двигателя постоянного тока смешанного возбуждения (дсв)
- •3.10 Расчет тормозных сопротивлений для двигателей постоянного тока
- •3.11 Естественные механическая и электромеханическая характеристика асинхронного двигателя (ад)
- •3.12 Искусственные механические характеристики ад при изменении параметров цепей двигателя и питающей сети.
- •3.13 Тормозные режимы асинхронного двигателя
- •3.14 Расчет естественной и искусственных механических характеристик ад
- •3.15 Расчет сопротивлений для роторной цепи ад
- •3.16 Электромеханические свойства синхронного двигателя сд
- •4. Переходные режимы электроприводов
- •4.1 Общая характеристика переходных режимов электроприводов, их классификация и понятие об оптимальных переходных процессах
- •4.6 Графический метод интегрирования уравнения движения (метод пропорций)
- •4.8 Переходный процесс в электроприводе с двигателем независимого возбуждения при изменении магнитного потока
- •5. Регулирование координат электропривода
- •5.1 Требования к координатам электропривода и формированию его статических и динамических характеристик
- •5.2 Основные показатели способов регулирования координат электропривода
- •5.3 Системы управляемый преобразователь – двигатель (уп–д)
- •5.4 Система генератор–двигатель постоянного тока (г–д)
- •5.5 Расчет статических механических характеристик в системе г-д
- •5.6 Система тиристорный преобразователь – двигатель (тп–д)
- •5.7 Торможение и реверсирование двигателя в системе тп-д и статические механические характеристики реверсивного вентильного электропривода постоянного тока
- •5.8 Расчет статических механических характеристик в системе тп-д
- •5.9 Коэффициент мощности и основные технико-экономические показатели системы тп-д
- •5.10 Законы частотного регулирования асинхронными двигателями
- •5.11 Статические механические характеристики ад, при частотном управлении с компенсацией падений напряжений
- •5.12 Система пч-ад с электромашинным и статическим преобразователем частоты и основные технико-экономические показатели
- •5.13 Регулирование скорости ад в каскадных схемах. Принцип регулирования и понятие об электрическом и электромеханическом каскадах
- •5.14 Каскад с асинхронным двигателем, работающим в режиме двойного питания
- •5.15 Каскады ад с машиной постоянного тока и вентильным преобразователем
- •5.16 Регулируемый электропривод переменного тока с вентильным двигателем (вд)
- •6. Нагревание электродвигателей и основы их выбора по мощности
- •6.1 Общие сведения о нагревании двигателей и нагрузочныхдиаграммах электроприводов
- •6.2 Номинальные режимы работы электродвигателей
- •6.3 Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
- •6.4 Нагревание двигателей при кратковременном режиме работы с постоянной нагрузкой
- •6.5 Нагревание двигателей при повторно-кратковременном режиме работы
- •6.6 Предварительный выбор двигателей по мощности
- •6.7 Проверка допустимой нагрузки двигателя по методу средних потерь
- •6.8 Определение потерь и кпд двигателя при номинальной и неноминальной нагрузке
- •6.9 Проверка допустимой нагрузки двигателя по методу эквивалентного (среднеквадратичного) тока
- •6.10 Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
- •6.11 Выбор мощности двигателя для работы с длительной неизменной нагрузкой
- •6.12 Выбор мощности двигателя для кратковременного режиме работы
- •6.13 Выбор мощности двигателя для повторно-кратковременного режима работы
- •6.14 Выбор двигателей для работы в режимахS4s8 и выбор преобразователей для регулируемых электроприводов
- •6.15 Особенности выбора мощности ад с к.З. Ротором и определение допустимого числа включений их в час при повторно-кратковременном режиме работы
- •7. Энергетика электроприводов
- •7.1 Потери энергии при установившемся режиме работы нерегулируемого электропривода
- •7.2 Потери мощности и энергии в установившемся режиме регулируемого электропривода
- •7.4 Потери энергии при переходных процессах в нерегулируемом электроприводе
- •7.5 Потери энергии при переходных процессах в регулируемом электроприводе и способы уменьшения потерь энергии
- •8. Принципы автоматизации процессов
- •Использованная литература
6.2 Номинальные режимы работы электродвигателей
По условиям нагревания различают восемь режимов работы электродвигателей, обозначемых S1, S2, … S8.
S1. Продолжительный номинальный режим
Характеризуется тем, что за время работы с номинальной нагрузкой температура перегрева двигателя τ достигает установившегося значения уст. Под температурой перегрева понимают разность τ=t°-tокр.ср. Идеализированная нагрузочная диаграмма P=f(t) и кривая =f(t) изображены на рис. 6.2.1. В таком режиме работает электропривод таких механизмов, как вентиляторы, насосы, транспортеры.
S2. Номинальный кратковременный режим
Характеризуется тем, что за время кратковременной работы tк с номинальной нагрузкой температура перегрева двигателя не достигает установившегося значения, а за время отключенного состояния двигатель успевает охладиться до температуры окружающей среды.
Идеализированная нагрузочная диаграмма электропривода и кривая изменения температуры перегрева представлены на рис. 6.2.2. В таком режиме работает, например, электропривод механизмов с моментом сопротивления, обусловленным вязким трением. Длительность кратковременной работы стандартизована и составляет 15, 30, 60, 90 минут.
S3. Номинальный повторно-кратковременный режим
Характеризуется тем, что за время работы с номинальной нагрузкой температура перегрева не достигает установившегося значения, а за время паузы, двигатель не успевает охладиться до температуры окружающей среды. Идеализированная нагрузочная диаграмма и кривая =f(t) изображены на рис. 6.2.3. Для характеристики этого режима принят символ ПВ% (продолжительность включения)
.
Используется и понятие относительной продолжительности включения ε
.
Время цикла не должно превышать 10 минут. Стандартные значения ПВ%: 15%, 25%, 40%, 60%.
S4. Номинальный повторно-кратковременный режим с частыми пусками
Характеризуется тем же, что и режим S3, но в этом режиме на нагрев двигателя существенно влияют пусковые потери. Идеализированная нагрузочная диаграмма и кривая =f(t) изображены на рис. 6.2.4.
.
Нормируемые значения ПВ% те же, что и для режима S3. Стандартное число пусков в час 30, 60, 120, 240.
Для
этого режима используется также такой
показатель, как коэффициент инерции,
представляющий отношение суммарного
приведенного к валу двигателя момента
инерции всей системы электропривода,
к моменту инерции ротора или якоря
самого двигателя
.
Нормированные значения коэффициента инерции 1,2; 1,6; 2,5; 4; 6,3; 10.
S5. Номинальный повторно-кратковременный режим с частыми пусками и электрическим торможением
Этот режим также характеризуется тем же, что и режим S3, но в этом режиме на нагреве двигателя сильно сказываются потери при пуске и торможении.
.
Нормируемы значения ПВ% и числа пусков такие же, что и для режима S4. Значения коэффициента инерции Fу 1,2; 1,6; 2,0; 2,5; 4.
Идеализированная нагрузочная диаграммы и кривая τ(t) приведена на рис. 6.2.5.
S6. Номинальный перемежающийся режим
Характеризуется тем, что за время работы с номинальной нагрузкой температура перегрева двигателя не достигает установившегося значения, а за время холостого хода он не охлаждается до температуры окружающей среды. Для обозначения этого режима используется символ ПН% (продолжительность нагрузки)
.
Продолжительность цикла не должна превышать 10 минут. Нормированные значения ПН% = 15, 25, 40, 60%.
Соответствующий график P=f(t) и τ=f(t) изображены на рис. 6.2.6.
S7. Номинальный перемежающийся режим с частыми реверсами
Характеризуется тем, что периоды неизменной номинальной нагрузки чередуются с периодами реверса, причем периоды нагрузки не настолько длительны, чтобы температура перегрева могли достигнуть установившихся значений. В этом режиме потери при реверсе оказывают существенное влияние на нагрев двигателя, работающего без остановки.
Числом реверсов в час 30, 60, 120, 240. Коэффициентом инерции такой же, что и в режиме S5.
Идеализированная нагрузочная диаграммы и кривая τ=f(t) приведена на рис. 6.2.7.
S8. Номинальный перемежающийся режим с двумя и более скоростями
Это режим, при котором периоды с одной нагрузкой и соответствующей ей угловой скорости чередуются с периодами работы с другой нагрузкой и соответствующей ей угловой скорости.
Потери энергии при переходе с одной скорости на другую в этом случае оказывают существенное влияние на нагрев двигателя, но периоды нагрузки на каждой из угловых скоростей не настолько длительны, чтобы температура перегрева двигателя могла достичь установившегося значения.
Данный режим характеризуется числом циклов в час, коэффициентом инерции и продолжительностью нагрузки на отдельных участках работы
Нормированные значения числа циклов в час: 30, 60; 120, 240. Коэффициент инерции: 1,2; 1,6; 2,0; 2,5; 4.