
- •Электрический привод
- •Пермь 2010 Содержание
- •Введение
- •Механика электропровода
- •1.1 Кинематическая схема электропривода. Силы и моменты, действующие в системе электропривода
- •1.2 Механические характеристики производственных механизмов при типовых нагрузках Для теории и практики электропривода большое значение имеют понятия механической характеристики рабочей машины.
- •1.3 ПриведениеJ, МсFc,mи с – жесткостей упругих элементов к расчетной скорости и расчетные схемы механической части электропривода.
- •1.4 Уравнение движения и режимы работы электропривода как динамической системы.
- •Понятие об электромеханических и механических характеристиках и режимах работы двигателей.
- •Электромеханические свойства электродвигателей
- •3.1 Естественные и искусственные электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения
- •3.2 Тормозные режимы двигателя независимого возбуждения Торможение с рекуперацией энергии в сеть
- •Торможение противовключением
- •Динамическое торможение
- •3.3 Расчет механических характеристик двигателя независимого возбуждения
- •3.4 Расчет сопротивлений для якорной цепи днв
- •3.5 Естественные и искусственные механические характеристики двигателя постоянного тока последовательного возбуждения (дпв)
- •3.6 Тормозные режимы двигателей последовательного возбуждения
- •3.7 Расчет искусственных электромеханических и механических характеристик дпв.
- •3.8 Расчет пусковых сопротивлений для якорной цепи дпв
- •3.9 Электромеханические свойства двигателя постоянного тока смешанного возбуждения (дсв)
- •3.10 Расчет тормозных сопротивлений для двигателей постоянного тока
- •3.11 Естественные механическая и электромеханическая характеристика асинхронного двигателя (ад)
- •3.12 Искусственные механические характеристики ад при изменении параметров цепей двигателя и питающей сети.
- •3.13 Тормозные режимы асинхронного двигателя
- •3.14 Расчет естественной и искусственных механических характеристик ад
- •3.15 Расчет сопротивлений для роторной цепи ад
- •3.16 Электромеханические свойства синхронного двигателя сд
- •4. Переходные режимы электроприводов
- •4.1 Общая характеристика переходных режимов электроприводов, их классификация и понятие об оптимальных переходных процессах
- •4.6 Графический метод интегрирования уравнения движения (метод пропорций)
- •4.8 Переходный процесс в электроприводе с двигателем независимого возбуждения при изменении магнитного потока
- •5. Регулирование координат электропривода
- •5.1 Требования к координатам электропривода и формированию его статических и динамических характеристик
- •5.2 Основные показатели способов регулирования координат электропривода
- •5.3 Системы управляемый преобразователь – двигатель (уп–д)
- •5.4 Система генератор–двигатель постоянного тока (г–д)
- •5.5 Расчет статических механических характеристик в системе г-д
- •5.6 Система тиристорный преобразователь – двигатель (тп–д)
- •5.7 Торможение и реверсирование двигателя в системе тп-д и статические механические характеристики реверсивного вентильного электропривода постоянного тока
- •5.8 Расчет статических механических характеристик в системе тп-д
- •5.9 Коэффициент мощности и основные технико-экономические показатели системы тп-д
- •5.10 Законы частотного регулирования асинхронными двигателями
- •5.11 Статические механические характеристики ад, при частотном управлении с компенсацией падений напряжений
- •5.12 Система пч-ад с электромашинным и статическим преобразователем частоты и основные технико-экономические показатели
- •5.13 Регулирование скорости ад в каскадных схемах. Принцип регулирования и понятие об электрическом и электромеханическом каскадах
- •5.14 Каскад с асинхронным двигателем, работающим в режиме двойного питания
- •5.15 Каскады ад с машиной постоянного тока и вентильным преобразователем
- •5.16 Регулируемый электропривод переменного тока с вентильным двигателем (вд)
- •6. Нагревание электродвигателей и основы их выбора по мощности
- •6.1 Общие сведения о нагревании двигателей и нагрузочныхдиаграммах электроприводов
- •6.2 Номинальные режимы работы электродвигателей
- •6.3 Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
- •6.4 Нагревание двигателей при кратковременном режиме работы с постоянной нагрузкой
- •6.5 Нагревание двигателей при повторно-кратковременном режиме работы
- •6.6 Предварительный выбор двигателей по мощности
- •6.7 Проверка допустимой нагрузки двигателя по методу средних потерь
- •6.8 Определение потерь и кпд двигателя при номинальной и неноминальной нагрузке
- •6.9 Проверка допустимой нагрузки двигателя по методу эквивалентного (среднеквадратичного) тока
- •6.10 Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
- •6.11 Выбор мощности двигателя для работы с длительной неизменной нагрузкой
- •6.12 Выбор мощности двигателя для кратковременного режиме работы
- •6.13 Выбор мощности двигателя для повторно-кратковременного режима работы
- •6.14 Выбор двигателей для работы в режимахS4s8 и выбор преобразователей для регулируемых электроприводов
- •6.15 Особенности выбора мощности ад с к.З. Ротором и определение допустимого числа включений их в час при повторно-кратковременном режиме работы
- •7. Энергетика электроприводов
- •7.1 Потери энергии при установившемся режиме работы нерегулируемого электропривода
- •7.2 Потери мощности и энергии в установившемся режиме регулируемого электропривода
- •7.4 Потери энергии при переходных процессах в нерегулируемом электроприводе
- •7.5 Потери энергии при переходных процессах в регулируемом электроприводе и способы уменьшения потерь энергии
- •8. Принципы автоматизации процессов
- •Использованная литература
6. Нагревание электродвигателей и основы их выбора по мощности
6.1 Общие сведения о нагревании двигателей и нагрузочныхдиаграммах электроприводов
При электромеханическом преобразовании энергии в двигателе часть ее превращается в тепло, в результате чего двигатель во время работы нагревается. Допустимый нагрев двигателя определяется теплостойкостью применяемых для изоляции его обмоток изоляционных материалов. Он лимитируется допустимой температурой нагрева этих материалов. Отдача части тепла, выделяемого в двигателе, в окружающую среду ограничивает его нагрев и повышение температуры двигателя по истечение некоторого времени прекращается (при данной нагрузке). Наступает установившийся тепловой режим, при котором количество тепла, выделяемого в двигателе, равно количеству тепла, отдаваемого в окружающую среду (если нагрузка двигателя остается неизменной).
Изоляционные материалы, применяемые в электрических машинах, делятся на следующие классы теплостойкости:
Класс изоляции |
Допустимая t° |
Основные компоненты |
A |
105° |
Х/б ткани, шелк, пряжа, бумага |
E |
120° |
Синтетические эмали, синтетическая и органическая пленки и т.п. |
B |
130° |
Слюда, асбест, стекловолокно, связующие органического происхождения |
F |
155° |
То же, но связующие синтетические |
H |
180° |
То же, но связующие кремнийорганические |
C |
более 180° |
Слюда, керамика, кварц, связующие неорганические |
Соблюдение установленных ограничений по допустимой температуре нагрева обеспечивает срок службы изоляции электрических машин 15-20 лет.
Небольшое превышение t°доп не означает, конечно, что двигатель сразу выйдет из строя. Однако оно приведет к интенсивному старению изоляции и сокращению срока эксплуатации машины из-за потери диэлектрической прочности изоляции.
Предельные температуры обмоток двигателей с изоляцией различных классов достигается при номинальной нагрузке и температуре окружающей среды 40°C.
При выборе двигателей по мощности в качестве исходных данных необходимо знать, как должна изменяться скорость электропривода во время рабочего процесса и как при этом изменяется во времени Мс механизма. Зависимости м=f(t) и Мс=f(t) называются, соответственно, тахограммой и нагрузочной диаграммой механизма. Эти зависимости при проектировании электропривода являются либо заданными, либо в задании на проектирование должны содержаться данные, достаточные для их расчета и построения. Они являются основой для расчета и построения нагрузочной диаграммы электропривода, т.е. зависимости электромагнитного момента двигателя от времени М=f(t). Под нагрузочной диаграммой электропривода понимается также зависимость P=f(t) и I=f(t).
Все многообразие производственных механизмов с точки зрения режимов работы электропривода можно разделить на механизмы непрерывного и механизмы циклического действия. Механизмы непрерывного действия характеризуются продолжительным режимом работы двигателя при неизменной заданной средней скорости ср=const. Время пуска и торможения электропривода таких механизмов ничтожно мало по сравнению с общим временем работы, на нагрев двигателя оно влияния не оказывает и при построении нагрузочных диаграмм может не учитываться. Тахограмма заданной скорости имеет вид прямой 1 (рис. 6.1.1).
Зависимости Мс=f(t) для механизмов непрерывного действия можно подразделить на следующие типовые группы:
Механизмы с постоянной нагрузкой Мс=const.
Механизмы с переменной циклической нагрузкой Мс=f(t), регулярно повторяющейся в течение длительного времени.
Механизмы с переменной циклической нагрузкой, зависящей от пути Мс=f(S).
Механизмы со случайным характером нагрузки.
Для рассматриваемой группы механизмов типовая зависимость Мс=f(t) в общем случае имеет вид циклической кривой 2 (см. рис. 6.1.1). Частным случаем этой зависимости является работа с Мс=const (прямая 3). Обычно для удобства расчетов реальная зависимость Мс=f(t) заменяется ступенчатой (ломанная 4).
На изменение нагрузки электропривод реагирует изменением скорости двигателя и для достаточно удаленного от начала работы установившегося режима тахограмма =f(t) имеет вид кривой 5. Изменения скорости вызывают Мдин и, как следствие, нагрузочная диаграмма электропривода (двигателя) всегда отличается (кривая 6) от нагрузочной диаграммы 2 механизма, т.к. механическая инерция привода оказывает на нагрузку двигателя сглаживающее действие.
Общим признаком механизмов циклического действия является наличие одного или нескольких включений двигателя и соответствующего числа пауз в каждом цикле, причем на отдельных участках цикла работы возможно и изменение направления вращения механизма. В виде примера на рис. 6.1.2 изображена диаграмма Mc=f(t) и тахограмма =f(t) механизма циклического действия (ломаная 1 и 2), а также нагрузочная диаграмма электропривода (ломаная 3). Из сравнения данного рисунка с предыдущим, можно сделать вывод, что механическая инерция электропривода механизмов циклического действия является фактором, увеличивающим нагрузку двигателя.