
- •Электрический привод
- •Пермь 2010 Содержание
- •Введение
- •Механика электропровода
- •1.1 Кинематическая схема электропривода. Силы и моменты, действующие в системе электропривода
- •1.2 Механические характеристики производственных механизмов при типовых нагрузках Для теории и практики электропривода большое значение имеют понятия механической характеристики рабочей машины.
- •1.3 ПриведениеJ, МсFc,mи с – жесткостей упругих элементов к расчетной скорости и расчетные схемы механической части электропривода.
- •1.4 Уравнение движения и режимы работы электропривода как динамической системы.
- •Понятие об электромеханических и механических характеристиках и режимах работы двигателей.
- •Электромеханические свойства электродвигателей
- •3.1 Естественные и искусственные электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения
- •3.2 Тормозные режимы двигателя независимого возбуждения Торможение с рекуперацией энергии в сеть
- •Торможение противовключением
- •Динамическое торможение
- •3.3 Расчет механических характеристик двигателя независимого возбуждения
- •3.4 Расчет сопротивлений для якорной цепи днв
- •3.5 Естественные и искусственные механические характеристики двигателя постоянного тока последовательного возбуждения (дпв)
- •3.6 Тормозные режимы двигателей последовательного возбуждения
- •3.7 Расчет искусственных электромеханических и механических характеристик дпв.
- •3.8 Расчет пусковых сопротивлений для якорной цепи дпв
- •3.9 Электромеханические свойства двигателя постоянного тока смешанного возбуждения (дсв)
- •3.10 Расчет тормозных сопротивлений для двигателей постоянного тока
- •3.11 Естественные механическая и электромеханическая характеристика асинхронного двигателя (ад)
- •3.12 Искусственные механические характеристики ад при изменении параметров цепей двигателя и питающей сети.
- •3.13 Тормозные режимы асинхронного двигателя
- •3.14 Расчет естественной и искусственных механических характеристик ад
- •3.15 Расчет сопротивлений для роторной цепи ад
- •3.16 Электромеханические свойства синхронного двигателя сд
- •4. Переходные режимы электроприводов
- •4.1 Общая характеристика переходных режимов электроприводов, их классификация и понятие об оптимальных переходных процессах
- •4.6 Графический метод интегрирования уравнения движения (метод пропорций)
- •4.8 Переходный процесс в электроприводе с двигателем независимого возбуждения при изменении магнитного потока
- •5. Регулирование координат электропривода
- •5.1 Требования к координатам электропривода и формированию его статических и динамических характеристик
- •5.2 Основные показатели способов регулирования координат электропривода
- •5.3 Системы управляемый преобразователь – двигатель (уп–д)
- •5.4 Система генератор–двигатель постоянного тока (г–д)
- •5.5 Расчет статических механических характеристик в системе г-д
- •5.6 Система тиристорный преобразователь – двигатель (тп–д)
- •5.7 Торможение и реверсирование двигателя в системе тп-д и статические механические характеристики реверсивного вентильного электропривода постоянного тока
- •5.8 Расчет статических механических характеристик в системе тп-д
- •5.9 Коэффициент мощности и основные технико-экономические показатели системы тп-д
- •5.10 Законы частотного регулирования асинхронными двигателями
- •5.11 Статические механические характеристики ад, при частотном управлении с компенсацией падений напряжений
- •5.12 Система пч-ад с электромашинным и статическим преобразователем частоты и основные технико-экономические показатели
- •5.13 Регулирование скорости ад в каскадных схемах. Принцип регулирования и понятие об электрическом и электромеханическом каскадах
- •5.14 Каскад с асинхронным двигателем, работающим в режиме двойного питания
- •5.15 Каскады ад с машиной постоянного тока и вентильным преобразователем
- •5.16 Регулируемый электропривод переменного тока с вентильным двигателем (вд)
- •6. Нагревание электродвигателей и основы их выбора по мощности
- •6.1 Общие сведения о нагревании двигателей и нагрузочныхдиаграммах электроприводов
- •6.2 Номинальные режимы работы электродвигателей
- •6.3 Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
- •6.4 Нагревание двигателей при кратковременном режиме работы с постоянной нагрузкой
- •6.5 Нагревание двигателей при повторно-кратковременном режиме работы
- •6.6 Предварительный выбор двигателей по мощности
- •6.7 Проверка допустимой нагрузки двигателя по методу средних потерь
- •6.8 Определение потерь и кпд двигателя при номинальной и неноминальной нагрузке
- •6.9 Проверка допустимой нагрузки двигателя по методу эквивалентного (среднеквадратичного) тока
- •6.10 Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
- •6.11 Выбор мощности двигателя для работы с длительной неизменной нагрузкой
- •6.12 Выбор мощности двигателя для кратковременного режиме работы
- •6.13 Выбор мощности двигателя для повторно-кратковременного режима работы
- •6.14 Выбор двигателей для работы в режимахS4s8 и выбор преобразователей для регулируемых электроприводов
- •6.15 Особенности выбора мощности ад с к.З. Ротором и определение допустимого числа включений их в час при повторно-кратковременном режиме работы
- •7. Энергетика электроприводов
- •7.1 Потери энергии при установившемся режиме работы нерегулируемого электропривода
- •7.2 Потери мощности и энергии в установившемся режиме регулируемого электропривода
- •7.4 Потери энергии при переходных процессах в нерегулируемом электроприводе
- •7.5 Потери энергии при переходных процессах в регулируемом электроприводе и способы уменьшения потерь энергии
- •8. Принципы автоматизации процессов
- •Использованная литература
5.10 Законы частотного регулирования асинхронными двигателями
Использование асинхронного двигателя в регулируемом электроприводе, особенно при его частотном управлении, представляет особый интерес. Для реализации этого способа управления питание двигателя необходимо осуществлять от управляемого преобразователя частоты. В качестве преобразователей частоты могут использоваться синхронные генераторы, вращаемые с переменной скоростью, асинхронные преобразователи частоты и статические преобразователи, выполняемые на базе автономных инверторов напряжения и тока, а также на базе силовых транзисторов.
При частотном управлении АД возникает необходимость регулировать не только частоту, но и величину подводимого напряжения, причем напряжение должно регулироваться не только в функции частоты, но ещё и в функции нагрузки. Регулирование напряжения только в функции частоты с учетом характеристик механизма может быть реализовано в разомкнутых системах частотного управления, а в функции частоты и нагрузки – лишь в замкнутых системах.
Верхний предел регулирования частоты, следовательно, скорости двигателя, ограничивается прочностью крепления обмоток ротора и заметным увеличением потерь в стали статора. Нижний предел ограничен сложностью реализации источника питания с низкой частотой и возможностью неравномерности вращения двигателя. Как правило, напряжение регулируется лишь вниз по отношению к номинальному, а частота - вверх и вниз по отношению к основной (номинальной).
При выборе соотношения между частотой и напряжением, подводимым к статору АД, чаще всего исходят из условия сохранения перегрузочной способности двигателя для любой из его регулировочных характеристик. Основным законом частотного регулирования является закон Костенко
,
где
МС и М'C -статические моменты сопротивления соответствующие скорости двигателя при частотах f1 и f’1, а U1 и U'1 – соответствующие этим частотам напряжения.
В относительных единицах этот закон имеет вид:
,
где
Из него следует, что закон изменения напряжения определяется не только частотой источника питания, но и характером изменения момента сопротивления механизма на валу двигателя при изменении угловой скорости.
Согласно формуле Бланка
или
в относительных единицах
т.к.
;
и
Основной закон теперь можно представить в виде:
При постоянном моменте на валу двигателя МС, следовательно и С, не зависит от скорости, а значит и частоты. Поэтому х=0 и
или
,
Полученный закон – это закон пропорционального управления. Механические характеристики двигателя при этом законе изображены на рис. 5.10.1. Жесткость характеристик сохраняется сравнительно высокой. Однако при значительном снижении чистоты (ниже 0,5f1H) уменьшается критический момент, следовательно перегрузочная способность двигателя. Объясняется это падением напряжения на активном сопротивлении r1 статора, в результате чего к намагничивающей цепи двигателя подводится тем меньшее напряжение, чем меньше частота, что, в свою очередь уменьшает магнитный поток, от величины которого зависит Мкр.
Плавное регулирование до f1=0 при этом законе невозможно. Невозможно также обеспечить устойчивую работу двигателя при Мс=const в широком диапазоне регулирования частоты.
Закон пропорционального регулирования целесообразен только для крупных двигателей, у который r1 мало, а для маломощных двигателей он малоэффективен, т.к. уже при φ1<0,5 перегрузочная способность их заметно снижается (у них большое r1). Потери в двигателе больше, чем при основном законе.
При
идеальном вентиляторном моменте
сопротивления x=2,
μ0=0
и
или
Механические характеристики при этом законе изображены на рис. 5.10.2.
При
постоянной мощности статической нагрузки
Рс=const.
или
.
В этом случае пренебрегая величиной μ0
x=-1 и закон управления имеет вид
или
.
Механические характеристики при этом законе изображены на рис. 5.10.2.
Перечисленные законы легко реализуются в разомкнутых системах электропривода, т.к. напряжение здесь нужно изменить только в функции частоты. Но изменять напряжение не только в функции частоты, но еще и в функции напряжения, возможно только в замкнутых системах электропривода, содержащих обратные связи. В этом случае должны использоваться законы, обеспечивающие компенсацию падения напряжения на сопротивлениях обмоток статора и ротора двигателя, т.к. падение напряжения зависит от нагрузки. Т.е. законы, позволяющие поддерживать постоянными потокосцепления статора, ротора и взаимной индукции.
Поэтому напряжение, подводимое к статору и изменение частоты (и даже при ее постоянстве) необходимо регулировать таким образом, чтобы скомпенсировать падение напряжения на всех элементах схемы замещения АД, которые являются принципиально важными с точки зрения передачи электромагнитной мощности. Этим самым можно обеспечить постоянство потокосцеплений ψ, ψ12 и ψ2.