
- •Электрический привод
- •Пермь 2010 Содержание
- •Введение
- •Механика электропровода
- •1.1 Кинематическая схема электропривода. Силы и моменты, действующие в системе электропривода
- •1.2 Механические характеристики производственных механизмов при типовых нагрузках Для теории и практики электропривода большое значение имеют понятия механической характеристики рабочей машины.
- •1.3 ПриведениеJ, МсFc,mи с – жесткостей упругих элементов к расчетной скорости и расчетные схемы механической части электропривода.
- •1.4 Уравнение движения и режимы работы электропривода как динамической системы.
- •Понятие об электромеханических и механических характеристиках и режимах работы двигателей.
- •Электромеханические свойства электродвигателей
- •3.1 Естественные и искусственные электромеханические и механические характеристики двигателя постоянного тока независимого возбуждения
- •3.2 Тормозные режимы двигателя независимого возбуждения Торможение с рекуперацией энергии в сеть
- •Торможение противовключением
- •Динамическое торможение
- •3.3 Расчет механических характеристик двигателя независимого возбуждения
- •3.4 Расчет сопротивлений для якорной цепи днв
- •3.5 Естественные и искусственные механические характеристики двигателя постоянного тока последовательного возбуждения (дпв)
- •3.6 Тормозные режимы двигателей последовательного возбуждения
- •3.7 Расчет искусственных электромеханических и механических характеристик дпв.
- •3.8 Расчет пусковых сопротивлений для якорной цепи дпв
- •3.9 Электромеханические свойства двигателя постоянного тока смешанного возбуждения (дсв)
- •3.10 Расчет тормозных сопротивлений для двигателей постоянного тока
- •3.11 Естественные механическая и электромеханическая характеристика асинхронного двигателя (ад)
- •3.12 Искусственные механические характеристики ад при изменении параметров цепей двигателя и питающей сети.
- •3.13 Тормозные режимы асинхронного двигателя
- •3.14 Расчет естественной и искусственных механических характеристик ад
- •3.15 Расчет сопротивлений для роторной цепи ад
- •3.16 Электромеханические свойства синхронного двигателя сд
- •4. Переходные режимы электроприводов
- •4.1 Общая характеристика переходных режимов электроприводов, их классификация и понятие об оптимальных переходных процессах
- •4.6 Графический метод интегрирования уравнения движения (метод пропорций)
- •4.8 Переходный процесс в электроприводе с двигателем независимого возбуждения при изменении магнитного потока
- •5. Регулирование координат электропривода
- •5.1 Требования к координатам электропривода и формированию его статических и динамических характеристик
- •5.2 Основные показатели способов регулирования координат электропривода
- •5.3 Системы управляемый преобразователь – двигатель (уп–д)
- •5.4 Система генератор–двигатель постоянного тока (г–д)
- •5.5 Расчет статических механических характеристик в системе г-д
- •5.6 Система тиристорный преобразователь – двигатель (тп–д)
- •5.7 Торможение и реверсирование двигателя в системе тп-д и статические механические характеристики реверсивного вентильного электропривода постоянного тока
- •5.8 Расчет статических механических характеристик в системе тп-д
- •5.9 Коэффициент мощности и основные технико-экономические показатели системы тп-д
- •5.10 Законы частотного регулирования асинхронными двигателями
- •5.11 Статические механические характеристики ад, при частотном управлении с компенсацией падений напряжений
- •5.12 Система пч-ад с электромашинным и статическим преобразователем частоты и основные технико-экономические показатели
- •5.13 Регулирование скорости ад в каскадных схемах. Принцип регулирования и понятие об электрическом и электромеханическом каскадах
- •5.14 Каскад с асинхронным двигателем, работающим в режиме двойного питания
- •5.15 Каскады ад с машиной постоянного тока и вентильным преобразователем
- •5.16 Регулируемый электропривод переменного тока с вентильным двигателем (вд)
- •6. Нагревание электродвигателей и основы их выбора по мощности
- •6.1 Общие сведения о нагревании двигателей и нагрузочныхдиаграммах электроприводов
- •6.2 Номинальные режимы работы электродвигателей
- •6.3 Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
- •6.4 Нагревание двигателей при кратковременном режиме работы с постоянной нагрузкой
- •6.5 Нагревание двигателей при повторно-кратковременном режиме работы
- •6.6 Предварительный выбор двигателей по мощности
- •6.7 Проверка допустимой нагрузки двигателя по методу средних потерь
- •6.8 Определение потерь и кпд двигателя при номинальной и неноминальной нагрузке
- •6.9 Проверка допустимой нагрузки двигателя по методу эквивалентного (среднеквадратичного) тока
- •6.10 Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
- •6.11 Выбор мощности двигателя для работы с длительной неизменной нагрузкой
- •6.12 Выбор мощности двигателя для кратковременного режиме работы
- •6.13 Выбор мощности двигателя для повторно-кратковременного режима работы
- •6.14 Выбор двигателей для работы в режимахS4s8 и выбор преобразователей для регулируемых электроприводов
- •6.15 Особенности выбора мощности ад с к.З. Ротором и определение допустимого числа включений их в час при повторно-кратковременном режиме работы
- •7. Энергетика электроприводов
- •7.1 Потери энергии при установившемся режиме работы нерегулируемого электропривода
- •7.2 Потери мощности и энергии в установившемся режиме регулируемого электропривода
- •7.4 Потери энергии при переходных процессах в нерегулируемом электроприводе
- •7.5 Потери энергии при переходных процессах в регулируемом электроприводе и способы уменьшения потерь энергии
- •8. Принципы автоматизации процессов
- •Использованная литература
5.8 Расчет статических механических характеристик в системе тп-д
Расчет статических механических характеристик системы ТП-Д без обратных связей выполняется по уравнению механической характеристики
;
где
При m=6 Ed0=Ud0= 2,34U2ф;
m=3 Ed0=Ud0= 1,17U2ф;
Порядок расчета следующий:
Определяется эквивалентное сопротивление якорной цепи
,
где
Хmp, Rmp – индуктивное и активное сопротивления фазы трансформатора, приведенные к его вторичной обмотке.
:
Здесь Рк.з – потери к.з. трансформатора;
m1 – число фаз;
Uкз – напряжение к.з. трансформатора;
-
коэффициент трансформации трансформатора.
Сопротивления сглаживающего и уравнительного дросселей
;
,
где
- падение напряжения на дросселях при Idн.
Определяется угол задержки открывания вентилей i, необходимый для обеспечения работы двигателя с установившейся скоростью с.i
Здесь
- ток статической нагрузки, которому
соответствует приведенный момент
,
определяемый по характеристикес=f(Mc)
при данной ci
Задаваясь моментом М по уравнению рассчитываются механические характеристики системы.
5.9 Коэффициент мощности и основные технико-экономические показатели системы тп-д
Вследствие специфики режима работы вентилей происходит искажение формы кривой тока, потребляемого ТП из сети, а при регулировании выходного напряжения преобразователя возникает дополнительное искажение формы кривой тока и сдвиг по фазе между напряжением и током, т.к. ток через вентили начинает проходить позднее, чем при отсутствии регулирования. Отключение вентилей, т.е. прекращение тока, также происходит соответственно позднее. При достаточной индуктивности якорной цепи ток через вентили продолжает протекать в том же направлении даже при изменении знака напряжения.
Важнейшим энергетическим показателем вентильного преобразователя и вентильного электропривода, является коэффициент мощности, который характеризует использование питающей системы. При синусоидальном U и I он равен косинусу угла сдвига по фазе между током и напряжением. В вентильных установках напряжение по форме кривой близко к синусоиде (в действительности кривая первичного напряжения несинусоидальна, что является следствием несинусоидальности потребляемого из сети тока). Кривая же тока резко искажена в/r. Поскольку в/r напряжения, созданные преобразователем в питающей системе, опережают по фазе на 90 создавшие их гармоники тока, активная мощность этих гармоник равна 0. Сдвиг по фазе между гармониками тока вентильного преобразователя и гармониками напряжения, созданными в питающей системе, другими ТП, дуговыми печами, мощными трансформаторами и т.п., не равен 90. Поэтому их мощность не равна 0. Но активная мощность в/r не совершает полезной работы в вентильном электроприводе, а рассеивается в виде потерь, ухудящая КПД электропривода. Полезную работу совершает часть активной энергии основной гармоники тока и напряжения, а другая часть этой энергии также рассеивается в преобразователе и двигателе. Вследствие относительной малости активной мощности в/r токов и напряжений принято определять активную мощность (и энергию) по основным гармоникам токов и напряжений. Полная мощность определяется с учетом всех гармоник.
Отношение активной мощности P к полной S характеризует использование питающей энергосистемы и называется коэффициентом мощности вентильного электропривода (собирательное понятие).
,
где
Здесь N – мощность искажения, вызванная токами в/r, протекающими в сети переменного тока. Отрицательный эффект мощности N схож с эффектом реактивной мощности – увеличение потерь и уменьшение КПД.
Т.к.
;
,
то
,
где
u, I – коэффициенты искажения напряжения и тока, а - коэффициент искажения мощности.
В бестрансформаторных схемах при достаточной индуктивности в цепи выпрямленного тока =1 и cos1=cos
В
трансформаторных схемах
С достаточным приближением можно считать, что
т.к напряжению Ud соответствует скорость при данном угле регулирования, а напряжению Udo – скорость ω0 при том же угле регулирования.
Отсюда следует, что χ вентильного электропривода зависит от скорости при регулировании и нагрузки на валу, т.е. он пропорционален степени снижения скорости. Снижение и соответственно увеличение угла , а также увеличение тока нагрузки приводит к уменьшению . На графике рис. 5.9.1 приведены зависимость от при номинальной нагрузке системы ТП-Д и cosφ системы ГД (для сравнения). Видно, что коэффициент мощности системы ТП-Д уступает системе ГД.
С целью повышения значения применяются методы искусственной коммутации вентилей и специальные резонансные фильтры, обеспечивающие резонанс напряжений на соответствующей гармонике и малое сопротивление для этой гармоники на входе преобразователя.
КПД системы ТП – Д
Для режима непрерывного тока электромагнитная мощность
Мощность, потребляемая из сети
Тогда
Анализ этого выражения показывает, что КПД системы ТП-Д зависит как от нагрузки двигателя, так и от скорости при регулировании. Сравнение приведенных на рис. 5.9.2 зависимостей от при номинальной нагрузке на валу двигателя показывает, что он выше, чем в системе ГД.
Основные достоинства системы ТП-Д:
Высокое быстродействие преобразователя, т.к. TП≤0,1 с
Более высокий КПД по сравнению с системой ГД
Незначительная мощность управления
Большой срок службы
Малые габариты и вес преобразователя
Простота осуществления резервирования и взаимозаменяемости блоков и узлов ТП
Постоянная готовность к работе
Установленная мощность системы при использовании нереверсивного преобразователя оставляет ~ 2 Pдвиг, т.е. меньше, чем в системе ГД.
Недостатки системы ТП-Д:
Значительное искажение кривой тока, потребляемого преобразователем из сети
Уменьшение коэффициента мощности преобразователя при уменьшении скорости. Этот недостаток становится особенно заметным и важным при больших мощностях электропривода.
Неминуемые при регулировании угла колебания реактивной мощности, приводящие к колебаниям напряжения в питающей сети, так же особенно заметные при большой мощности электропривода.