- •Пермский Государственный Технический Университет
- •Механика электромеханической системы Кинематическая схема эл.Привода. Силы и моменты, действующие в системе эл.Привода.
- •Механические характеристики производственных механизмов. Для теории и практики эл.Привода большое значение имеют понятия механической характеристики рабочей машины.
- •Уравнение движения и режимы работы эл.Привода как динамической системы.
- •Математическое описание процессов электромеханического преобразования энергии. Понятие о электромеханических и механических характеристиках электродвигателей, их жесткости и режимы работы эмп.
- •Естественные и искусственные эл.Механические и механические характеристики двигателя независимого возбуждения в именованных и относительных единицах.
- •Реверсирование двигателя независимого возбуждения и механические характеристики для прямого и обратного направления вращения.
- •Тормозные режимы двигателя независимого и параллельного возбуждения.
- •Генераторное торможение с рекуперацией (отдачей) энергии в сеть.
- •Торможение противовключением.
- •Электродинамическое торможение.
- •Расчет механических характеристик двигателя независимого возбуждения.
- •Расчет сопротивлений для якорной цепи днв.
- •Математическое описание процессов электромеханического преобразования энергии в двигателе постоянного тока последовательного возбуждения (дпв)
- •Естественные и искусственные электромеханические и механические характеристики дпв
- •Тормозные режимы дпв
- •Расчет пусковых сопротивлений для дпв.
- •Расчет тормозных сопротивлений для двигателей постоянного тока.
- •Естественные механическая и эл.Механическая характеристика ад. Формула Клосса.
- •Искусственные механические характеристики ад при изменении параметров цепей статора, ротора и питающей сети.
- •При изменении подводимого к двигателю напряжения изменяется момент, т.К. Он пропорционален квадрату напряжения.
- •3. Введение добавочного активного сопротивления в цепь ротора.
- •Тормозные режимы асинхронного двигателя.
- •2) Торможение с самовозбуждением
- •Расчет естественной и искусственных статистических механических характеристик ад
- •Расчет сопротивлений для роторной цепи ад.
- •Переходные режимы электроприводов
- •Регулирование координат электропривода Требования к координатам электропривода и формированию его статических и динамических характеристик
- •Основные показатели способов регулирования координат электропривода
- •Системы управляемый преобразователь – двигатель (уп – д).
- •Расчет статических электромеханических и механических характеристик в системе гд
- •Система тиристорный преобразователь – двигатель (тп – д).
- •Расчет статических механических характеристик в системе тп-д
- •Коэффициент мощности и основные технико-экономические показатели вентильного электропривода
- •Частотное управление асинхронными двигателями
- •Законы частотного регулирования
- •Статические механические характеристики ад при частотном управлении.
- •Система пч-ад (преобразователь частоты - асинхронный двигатель)
- •Регулирование скорости электроприводов
- •Автоматическое регулирование скорости ад при использовании отрицательной обратной связи по скорости
- •Основы теории нагрева и выбора электродвигателей по мощности Общие сведения о нагревании и охлаждении двигателей
- •Нагрузочные диаграммы электроприводов
- •Номинальные режимы работы электродвигателей
- •Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
- •Нагревание двигателей при кратковременном режиме работы с постоянной нагрузкой
- •Нагревание двигателей при повторно-кратковременном режиме работы
- •Предварительный выбор двигателей по мощности
- •Проверка допустимой нагрузки двигателя по методу эквивалентного тока (выбор мощности двигателя)
- •Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
- •Выбор мощности двигателя при длительной неизменной нагрузке
- •Выбор мощности двигателя при кратковременном режиме работы
- •Выбор мощности двигателя для повторно-кратковременного режима работы
- •Энергетика электроприводов Потери энергии при установившемся режиме работы нерегулируемого электропривода
- •Потери мощности и энергии в установившемся режиме регулируемого электропривода
- •Потери энергии при переходных процессах в нерегулируемом электроприводе
Уравнение движения и режимы работы эл.Привода как динамической системы.
Механическая часть эл.привода представляет собой систему твердых тел, движущихся с различными скоростями. Уравнение движения ее можно определить на основе анализа запасов энергии в системе двигатель – рабочая машина, или на основе анализа второго закона Ньютона. Но наиблее общей формой записи диф. уравнений, определяющих движение системы, в которой число независимых переменных равно числу степеней свободы системы, является уравнение Лагранжа:
,
где
Wk
– запас кинетической энергии;
– обобщенная скорость; qi
– обобщенная координата; Qi
– обобщенная сила, определенная суммой
элементарных работ Ai
всех действующих сил на возможных
перемещениях qi:
![]()
При наличии в системе потенциальных сил формула Лагранжа принимает вид:
,
где
L=Wk-Wn функция Лагранжа, равная разности запасов кинетической Wk и потенциальной энергии Wn.
В качестве обобщенных координат, т.е. не зависимых переменных, могут быть приняты как различные угловые, так и линейные перемещения в системе. В трехмассовой упругой системе за обобщение координаты целесообразно принять угловое перемещение масс 1,2,3 и соответствующие им угловые скорости 1, 2, 3.
Запас
кинетической энергии в системе:
![]()
Запас потенциальной энергии деформации упругих элементов, подвергающихся скручиванию:
![]()
Здесь М12 и М23 – моменты упругого взаимодействия между инерционными массами J1 и J2, J2 и J3, зависящие от величины деформации 1-2 и 2-3.
На инерционную массу J1 действуют моменты М и Мс1. Элементарная работа приложенных к J1 моментов на возможном перемещении 1.
![]()
Следовательно,
обобщенная сила
.
Аналогично
элементарная работа всех приложений
ко 2-й и 3-й массам моментам на возможных
перемещениях 2
и 3:
,
откуда![]()
,
откуда
![]()
т.к. ко 2-й и 3-й массам электромагнитный момент двигателя не приложен. Функция Лагранжа L=Wk-Wn.
Учитывая значения Q1`,Q2`и Q3` и подставив их в уравнение Лагранжа, получим уравнения движения трехмассовой упругой системы
![]()
![]()
![]()
Здесь 1-е уравнение определяет движение инерционной массы J1, 2-е и 3-е движение инерционных масс J2 и J3.
В случае двухмассовой системы Мс3=0; J3=0 уравнения движения имеют вид:
![]()
![]()
В
случае жесткого приведенного механического
звена
;
![]()
Уравнение
движения имеет вид
![]()
Это уравнение является основным уравнением движения эл.привода.
В
системе эл.привода некоторых механизмов
содержится кривошипно – шатунные,
кулисные, карданные передачи. Для таких
механизмов радиус приведения “”
непостоянен, зависит от положения
механизма, так для кривошипно шатунного
механизма, изображенного на рис.
![]()
Получить уравнение движения в этом случае можно также на основе формулы Лагранжа или на основе составления энергетического баланса системы двигатель – рабочая машина. Воспользуемся последним условием.
Пусть
J
–суммарный приведенный к валу двигателя
момент инерции всех жестко и линейно
связанных вращающихся элементов, а m
– суммарная масса элементов жестко и
линейно связанных с рабочим органом
механизма, движущаяся со скоростью V.
Связь между
и V
нелинейна, причем
.
Запас кинетической энергии в системе:
![]()
т.к.
,
и
.
Здесь
- суммарный приведенный к валу двигателя
момент инерции системы.
Динамическая мощность:
![]()
Динамический момент:
,
или т.к.
,
то
.
Полученные уравнения движения позволяют анализировать возможные режимы движения эл.привода как динамической системы.
Возможны 2 режима (движения) электропривода: установившийся и переходный, причем установившийся режим может быть статическим или динамическим.
Установившийся
статический режим эл.привода с жесткими
связями имеет место в случае, когда
,
,
.
Для механизмов, у которых Мс
зависит от угла поворота (например,
кривошипно-шатунных), даже при
и
статический
режим отсутствует, а имеет место
установившийся динамический режим.
Во
всех остальных случаях, т.е. при
и
имеет
место переходный режим.
Переходным процессом эл.привода как динамической системы называют режим его работы при переходе от одного установившегося состояния к другому, когда изменяется ток, момент и скорость двигателя.
Переходные процессы всегда связаны с изменением скорости движения масс электропривода, поэтому всегда являются динамическими процессами.
Без переходного режима не совершается работа ни одного эл.привода. Эл.привод работает в переходных режимах при пуске, торможении, изменении скорости, реверсе, свободном выбеге (отключение от сети и движении по инерции).
Причинами возникновения переходных режимов являются или воздействия на двигатель с целью управления им изменением подводимого напряжения или его частоты, изменением сопротивления в цепях двигателя, изменение нагрузки на валу, изменение момента инерции.
Переходные режимы (процессы) возникают также в результате аварии или др. случайных причин, например, при изменении величины напряжения или его частоты, обрыве фаз, возникновении не симметрии питающего напряжения и т.п. Внешняя причина (возмущающее воздействие) является только внешним толчком, побуждающим эл.привод к переходным процессам.
