- •Пермский Государственный Технический Университет
- •Механика электромеханической системы Кинематическая схема эл.Привода. Силы и моменты, действующие в системе эл.Привода.
- •Механические характеристики производственных механизмов. Для теории и практики эл.Привода большое значение имеют понятия механической характеристики рабочей машины.
- •Уравнение движения и режимы работы эл.Привода как динамической системы.
- •Математическое описание процессов электромеханического преобразования энергии. Понятие о электромеханических и механических характеристиках электродвигателей, их жесткости и режимы работы эмп.
- •Естественные и искусственные эл.Механические и механические характеристики двигателя независимого возбуждения в именованных и относительных единицах.
- •Реверсирование двигателя независимого возбуждения и механические характеристики для прямого и обратного направления вращения.
- •Тормозные режимы двигателя независимого и параллельного возбуждения.
- •Генераторное торможение с рекуперацией (отдачей) энергии в сеть.
- •Торможение противовключением.
- •Электродинамическое торможение.
- •Расчет механических характеристик двигателя независимого возбуждения.
- •Расчет сопротивлений для якорной цепи днв.
- •Математическое описание процессов электромеханического преобразования энергии в двигателе постоянного тока последовательного возбуждения (дпв)
- •Естественные и искусственные электромеханические и механические характеристики дпв
- •Тормозные режимы дпв
- •Расчет пусковых сопротивлений для дпв.
- •Расчет тормозных сопротивлений для двигателей постоянного тока.
- •Естественные механическая и эл.Механическая характеристика ад. Формула Клосса.
- •Искусственные механические характеристики ад при изменении параметров цепей статора, ротора и питающей сети.
- •При изменении подводимого к двигателю напряжения изменяется момент, т.К. Он пропорционален квадрату напряжения.
- •3. Введение добавочного активного сопротивления в цепь ротора.
- •Тормозные режимы асинхронного двигателя.
- •2) Торможение с самовозбуждением
- •Расчет естественной и искусственных статистических механических характеристик ад
- •Расчет сопротивлений для роторной цепи ад.
- •Переходные режимы электроприводов
- •Регулирование координат электропривода Требования к координатам электропривода и формированию его статических и динамических характеристик
- •Основные показатели способов регулирования координат электропривода
- •Системы управляемый преобразователь – двигатель (уп – д).
- •Расчет статических электромеханических и механических характеристик в системе гд
- •Система тиристорный преобразователь – двигатель (тп – д).
- •Расчет статических механических характеристик в системе тп-д
- •Коэффициент мощности и основные технико-экономические показатели вентильного электропривода
- •Частотное управление асинхронными двигателями
- •Законы частотного регулирования
- •Статические механические характеристики ад при частотном управлении.
- •Система пч-ад (преобразователь частоты - асинхронный двигатель)
- •Регулирование скорости электроприводов
- •Автоматическое регулирование скорости ад при использовании отрицательной обратной связи по скорости
- •Основы теории нагрева и выбора электродвигателей по мощности Общие сведения о нагревании и охлаждении двигателей
- •Нагрузочные диаграммы электроприводов
- •Номинальные режимы работы электродвигателей
- •Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
- •Нагревание двигателей при кратковременном режиме работы с постоянной нагрузкой
- •Нагревание двигателей при повторно-кратковременном режиме работы
- •Предварительный выбор двигателей по мощности
- •Проверка допустимой нагрузки двигателя по методу эквивалентного тока (выбор мощности двигателя)
- •Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
- •Выбор мощности двигателя при длительной неизменной нагрузке
- •Выбор мощности двигателя при кратковременном режиме работы
- •Выбор мощности двигателя для повторно-кратковременного режима работы
- •Энергетика электроприводов Потери энергии при установившемся режиме работы нерегулируемого электропривода
- •Потери мощности и энергии в установившемся режиме регулируемого электропривода
- •Потери энергии при переходных процессах в нерегулируемом электроприводе
Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
Условия нагревания отдельных частей машины, несущих на себе изоляцию, различны. Большему нагреву обычно подвергаются те части обмотки, которые находятся во внутренних областях машины. Поскольку двигатель является неоднородным телом, выделение тепла и направление тепловых потоков внутри машины не остается постоянным, а меняется при переходе от режима нагрузки к режиму холостого хода. Эти обстоятельства весьма усложняют тепловые расчеты и делают задачу почти неразрешимой, если не принять некоторых допущений:
Двигатель считают телом однородным, теплопроводность его принимается бесконечной, передача тепла от одних частей машины к другим и, следовательно, в окружающую среду, происходит главным образом путем теплопроводности.
Для получения закона изменения температуры перегрева двигателя, воспользуемся уравнением теплового баланса двигателя
,
где:
Q– количество тепла, выделяемое в двигателе в единицу времени;
A– количество тепла, выделяемое двигателем в окружающую среду в единицу времени при разности температур в 1°С (теплоотдача в окружающую среду)
C– теплоемкость двигателя как однородного тела, т.е. количество тепла, необходимое для повышения температуры двигателя на 1°С.
Разделив переменные, находим:
![]()
При t=0в общем случае двигатель мог иметь перегрев0,
;
отсюда
;
или
,
где
-
установившееся значение температуры
перегрева, которое достигается через
бесконечно большое время;
- постоянная времени
нагрева. Это время, в течение которого
двигатель нагрелся бы до установившейся
температуры у,
если бы не было теплоотдачи в окружающую
среду.
Действительно, при А=0уравнение теплового баланса принимает вид:
,
откуда
.
Если нагрев двигателя идет от температуры окружающей среды, т.е. 0=0, то закон изменения температуры перегрева такой:
.
На основе этого и предыдущего уравнений для =f(t)на графике построены соответствующие кривые.
В

Р

Постоянная ТHзависит от конструкции и размеров двигателя. Двигатели защищенные небольшой мощности имеютТHв пределах (1020) мин. У крупных закрытых двигателей она достигает нескольких часов.
Для получения зависимости =f(t)при охлаждении двигателя оту1доу2, можно воспользоваться ранее полученным уравнением, подставив в него вместоу-у2, а вместо0-у1. Тогда
.
К

.
Кривая охлаждения двигателя, так же как и нагрева, является как бы суммой двух экспонент, одна из которых иллюстрирует нагревание его до =у2, а другая – охлаждение от начальной температуры0 =у.
Е

При различных нагрузках нагрев двигателя будет происходить по разным кривым, как показано на следующем рисунке. Постоянная нагрева остается неизменной, чему отвечают равные отрезки на соответствующих асимптотах . Установившиеся температуры перегрева тем выше, чем больше загружен двигатель, т.к. большей нагрузке отвечают и большие потери.
