- •Пермский Государственный Технический Университет
- •Механика электромеханической системы Кинематическая схема эл.Привода. Силы и моменты, действующие в системе эл.Привода.
- •Механические характеристики производственных механизмов. Для теории и практики эл.Привода большое значение имеют понятия механической характеристики рабочей машины.
- •Уравнение движения и режимы работы эл.Привода как динамической системы.
- •Математическое описание процессов электромеханического преобразования энергии. Понятие о электромеханических и механических характеристиках электродвигателей, их жесткости и режимы работы эмп.
- •Естественные и искусственные эл.Механические и механические характеристики двигателя независимого возбуждения в именованных и относительных единицах.
- •Реверсирование двигателя независимого возбуждения и механические характеристики для прямого и обратного направления вращения.
- •Тормозные режимы двигателя независимого и параллельного возбуждения.
- •Генераторное торможение с рекуперацией (отдачей) энергии в сеть.
- •Торможение противовключением.
- •Электродинамическое торможение.
- •Расчет механических характеристик двигателя независимого возбуждения.
- •Расчет сопротивлений для якорной цепи днв.
- •Математическое описание процессов электромеханического преобразования энергии в двигателе постоянного тока последовательного возбуждения (дпв)
- •Естественные и искусственные электромеханические и механические характеристики дпв
- •Тормозные режимы дпв
- •Расчет пусковых сопротивлений для дпв.
- •Расчет тормозных сопротивлений для двигателей постоянного тока.
- •Естественные механическая и эл.Механическая характеристика ад. Формула Клосса.
- •Искусственные механические характеристики ад при изменении параметров цепей статора, ротора и питающей сети.
- •При изменении подводимого к двигателю напряжения изменяется момент, т.К. Он пропорционален квадрату напряжения.
- •3. Введение добавочного активного сопротивления в цепь ротора.
- •Тормозные режимы асинхронного двигателя.
- •2) Торможение с самовозбуждением
- •Расчет естественной и искусственных статистических механических характеристик ад
- •Расчет сопротивлений для роторной цепи ад.
- •Переходные режимы электроприводов
- •Регулирование координат электропривода Требования к координатам электропривода и формированию его статических и динамических характеристик
- •Основные показатели способов регулирования координат электропривода
- •Системы управляемый преобразователь – двигатель (уп – д).
- •Расчет статических электромеханических и механических характеристик в системе гд
- •Система тиристорный преобразователь – двигатель (тп – д).
- •Расчет статических механических характеристик в системе тп-д
- •Коэффициент мощности и основные технико-экономические показатели вентильного электропривода
- •Частотное управление асинхронными двигателями
- •Законы частотного регулирования
- •Статические механические характеристики ад при частотном управлении.
- •Система пч-ад (преобразователь частоты - асинхронный двигатель)
- •Регулирование скорости электроприводов
- •Автоматическое регулирование скорости ад при использовании отрицательной обратной связи по скорости
- •Основы теории нагрева и выбора электродвигателей по мощности Общие сведения о нагревании и охлаждении двигателей
- •Нагрузочные диаграммы электроприводов
- •Номинальные режимы работы электродвигателей
- •Нагревание и охлаждение двигателей при длительном режиме работы с постоянной нагрузкой
- •Нагревание двигателей при кратковременном режиме работы с постоянной нагрузкой
- •Нагревание двигателей при повторно-кратковременном режиме работы
- •Предварительный выбор двигателей по мощности
- •Проверка допустимой нагрузки двигателя по методу эквивалентного тока (выбор мощности двигателя)
- •Проверка допустимой нагрузки двигателя по методам эквивалентного момента и эквивалентной мощности
- •Выбор мощности двигателя при длительной неизменной нагрузке
- •Выбор мощности двигателя при кратковременном режиме работы
- •Выбор мощности двигателя для повторно-кратковременного режима работы
- •Энергетика электроприводов Потери энергии при установившемся режиме работы нерегулируемого электропривода
- •Потери мощности и энергии в установившемся режиме регулируемого электропривода
- •Потери энергии при переходных процессах в нерегулируемом электроприводе
Основы теории нагрева и выбора электродвигателей по мощности Общие сведения о нагревании и охлаждении двигателей
При электромеханическом преобразовании энергии в двигателе часть ее превращается в тепло, в результате чего двигатель во время работы нагревается. Допустимый нагрев двигателя определяется теплостойкостью применяемых для изоляции его обмоток изоляционных материалов. Он лимитируется допустимой температурой нагрева этих материалов. Отдача части тепла, выделяемого в двигателе, в окружающую среду ограничивает его нагрев и повышение температуры двигателя по истечение некоторого времени прекращается. Наступает установившийся тепловой режим, при котором количество тепла, выделяемого в двигателе, равно количеству тепла, отдаваемого в окружающую среду.
Изоляционные материалы, применяемые в электрических машинах, делятся на следующие классы нагревостойкости:
|
Класс Изоляции |
Допустимая t° нагрева |
Основные компоненты |
Для каких двигателей применяется данный класс изоляции |
|
A |
105° |
Х/б ткани, шелк, пряжа, бумага |
МПТ серии П до 2,2кВт АД серии ФК, А, АО |
|
E |
120° |
Синтетические эмали, синтетическая и органическая пленки и т.п. |
Двигатели малой мощности |
|
B |
130° |
Слюда, асбест. стекловолокно, связующие органического происхождения |
Двигатели серии 2П, 4А (двигатели старых серий П, АО, А2, АК2) |
|
F |
155° |
То же, но связующие синтетические |
Двигатели серий 2П, 4А, MTF, MTKF |
|
H |
180° |
То же, но связующие кремнийорганические |
МТН, МТКН, Д |
|
C |
> 180° |
Слюда, керамика, кварц, связующие неорганические |
|
Соблюдение установленных ограничений по допустимой температуре нагрева обеспечивает срок службы изоляции электрических машин для новых серий двигателей 15-20 лет.
Небольшое превышение допустимой температуры не означает, конечно, что двигатель сразу «сгорит». Однако оно приведет к интенсивному старению изоляции и сокращению срока эксплуатации машины из-за потери диэлектрической прочности изоляции. Так, для изоляции класса «А» превышение допустимой температуры на 8–10° сокращает срок ее службы вдвое, а при повышении температуры нагрева до 150° срок эксплуатации снижается до двух месяцев.
Предельные температуры обмоток двигателей с изоляцией различных классов достигается при номинальной нагрузке и температуре окружающей среды 40°C. Для двигателей обычно нормируется не допустимая температура обмотки и других частей машины, а допустимое превышение температуры обмотки над температурой окружающей среды, т.е. .
Нагрузочные диаграммы электроприводов
При выборе двигателей по мощности в качестве исходного материала необходимо знать, как должна изменяться скорость электропривода во время во время рабочего процесса и как при этом изменяется во времени Мс механизма. Зависимости м=f(t) и Мс=f(t) называются, соответственно, тахограммой электропривода и нагрузочной диаграммой механизма. Они являются основой для расчета и построения нагрузочной диаграммы электропривода, т.е. зависимости М=f(t) электромагнитного момента двигателя от времени. Под нагрузочной диаграммой электропривода понимается также зависимость тока или мощности, развиваемой двигателем от времени. Нагрузочные диаграммы используются не только для проверки мощности предварительно выбранного электродвигателя, но и сопоставления перегрузочной способности двигателя с кратковременной перегрузкой.
Зависимости м=f(t) и Мс=f(t) при проектировании электропривода являются либо заданными, либо в задании на проектирование должны содержаться данные, достаточные для их расчета и построения.
Все многообразие производственных механизмов с точки зрения режимов работы электропривода можно разделить на механизмы непрерывного и механизмы циклического действия.
О

Механизмы с постоянной нагрузкой Мс=const.
Механизмы с переменной циклической нагрузкой Мс=f(t), регулярно повторяющейся в течение длительного времени.
Механизмы с переменной циклической нагрузкой, зависящей от пути Мс=f().
Механизмы со случайным характером нагрузки.
В большинстве случаев в случайной нагрузке рассматриваемых механизмов удается выделить регулярную циклическую составляющую. Кроме того, постоянство средней скорости ср=constдает основание для замены зависимостиМс=f()более удобной для расчетов зависимостьюМс=f(t).
Для рассматриваемой группы механизмов типовая зависимость Мс=f(t)в общем случае имеет вид циклической кривой2. Частным случаем этой зависимости является работа сМс=const(прямая3). Обычно для удобства расчетов реальная зависимостьМс=f(t)заменяется ступенчатой зависимостью (ломанная4).
Электропривод
на изменение нагрузки реагирует
изменением скорости двигателя и для
достаточно удаленного от начала работы
установившегося цикла тахограмма =f(t)имеет вид кривой5. Изменения скорости
определяют значения динамического
момента
и, как следствие, нагрузочная диаграмма
электропривода (двигателя) всегда
отличается (кривая6) от нагрузочной
диаграммы механизма. Механическая
инерция привода оказывает на нагрузку
двигателя сглаживающее действие. При
возрастании нагрузки скорость
электропривода снижается и возрастающая
нагрузка частично преодолевается, за
счет освобождающейся из-за снижения
скорости кинетической энергии, которая
была запасена в период работы с малой
нагрузкой, когда скорость возрастала.
О

В виде примера на рисунке изображена тахограмма механизма циклического действия (ломаная 1). Ломаная2– примерный вид нагрузочной диаграммы механизмаMc=f(t). Нагрузочная диаграмма электроприводаM=f(t)имеет вид ломаной3. Из сравнения данного рисунка с предыдущим, можно сделать вывод, что механическая инерция электропривода механизмов циклического действия является фактором, увеличивающим нагрузку двигателя. Нагрузочная диаграмма электропривода этих механизмов является существенно неравномерней, чем у механизмов непрерывного действия.
