Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
117
Добавлен:
29.03.2015
Размер:
647.68 Кб
Скачать

§ 13.8. Зануление

Занулением называется преднамеренное электрическое соеди­нение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Нуле­вым защитным проводником называется проводник, соединяющий зануленные части с глухозаземленной нейтральной точкой обмотки источника тока или ее эквивалентом. Зануление применяется в се­тях напряжением до 1000 В.

В сети с глухозаземленной нейтралью напряжением до 1000 В защитное заземление неэффективно, так как ток глухого замыка­ния на землю зависит от сопротивления заземления.

Уменьшить напряжение корпуса, находящегося в контакте с токоведущими частями, устройством заземления в сети с глухоза­земленной нейтралью, невозможно. Можно обеспечить безопас­ность, уменьшив длительность режима замыкания на корпус. Для этого прокладывается нулевой провод, соединяющийся с глухоза­земленной нейтралью источника и повторными заземлениями, к ко­торому и присоединяют металлические корпуса электрооборудова­ния (рис. ).

Зануление превращает замыкание на корпус в однофазное короткое замыкание, в результате чего срабатывает максимальная токовая защита, которая селективно отключает поврежденный уча­сток сети. Кроме того, зануление снижает потенциалы корпусов, появляющиеся в момент замыкания на землю.

При замыкании, например, фазы А на зануленный корпус ток короткого замыкания проходит через следующие участки цепи: обмотку трансформатора (генератора), фазный провод и нулевой провод. Величина тока определяется фазным напряжением и пол­ным сопротивлением цепи однофазного короткого замыкания:

(1)

при этом сопротивления трансформатора ZT, проводов Zф.пр и Zн имеют активную и индуктивную составляющие.

Рис.1. Принципиальная схема зануления.

Если принять , то ток короткого замыкания

(2)

Например, если сопротивление Zф+Zh=0,2 Ом (в сетях напряже­нием 380/220 В обычно это сопротивление значительно меньше), то ток короткого замыкания

Iк = 220/0,2 = 1100 А. Очевидно, что при таком токе защита должна сработать.

При наличии повторного заземления нулевого провода напря­жение корпуса относительно земли

(3)

где Rп — сопротивление повторного заземления нулевого провода.

Ток замыкания на землю определяется из схемы, приведен­ий на рис.:

(4)

Здесь — падение напряжения в нулевом проводе, приложен­ное к последовательно соединенным сопротивлениям Rо и Rп.

Из закона Ома

или с учетом

(5)

Решая совместно уравнения, получаем при замыкании на корпус напряжение корпуса относительно земли:

(6)

Аналогично определяем напряжение нейтрали относительно земли:

(7)

Повторное заземление нулевого провода снижает напряжение на корпусе в момент короткого замыкания, особенно при обрыве нулевого провода. Если повторное заземление отсутствует (Rп→∞), выражения и принимают вид:

; .

При наличии повтор­ного заземления второй множитель в выражении (6) меньше единицы, в выражении (7) — больше нуля, т. е. потенциал корпуса меньше, чем величина Uк, а потенциал нейтрали больше нуля. Если принять Zф=Zн и Rп=Ro, то потенциалы

,

при U=220 В, Uо=Uз=55 В, что допустимо в течение 1 с.

Рис. 2. Распределение потен­циалов вдоль нулевого провода:

I — без повторного заземления; II — с повторным заземлением; 1—5 — корпусы

Без повторного заземления нулевого провода (Rп→∞) в случае замыкания на корпус его потенциал при U=220 В, Uз=110 В, а потенциал нейтрали равен нулю.

Таким образом, повторное заземление при замыкании на корпус уменьшает его потенциал и тем самым повышает безопасность. На рис. 2 показано распределение потенциалов вдоль нулевого провода между повторным заземлением (а значит, и корпусом) и заземлением нейтрали. Эти потенциалы существуют в течение вре­мени срабатывания защиты.

В случае обрыва нулевого провода при замыкании на корпус короткого замыкания не произойдет. При этом потенциалы опреде­ляются из (6) и (7), причем Zн→∞:

; .

При этих условиях все корпуса, соединенные с нулевым прово­дом за местом обрыва, оказываются под напряжением относительно земли, равным Uз. Те корпуса, которые занулены до места об­рыва, находятся под напряжением, равным Uо. Такой режим прин­ципиально не отличается от замыкания на заземленный корпус в сети с глухозаземленной нейтралью. Очевидно, этот режим опа­сен. Но при отсутствии повторного заземления нулевого провода опасность возрастает еще больше, так как замыкание происходит на корпус, не имеющий ни зануления, ни заземления. Корпуса электрооборудования, соединенные с корпусом с поврежденной изоляцией, оказываются под фазовым напряжением относительно земли (рис. 3).

Рис. 3. Замыкание на корпус при обрыве нулевого провода.

Потенциалы зануленных корпусов при однофазном коротком замыкании зави­сят от длины участка ну­левого провода между нейт­ралью источника и местом присоединения корпуса к нулевому проводу. При за­мыкании на один из корпу­сов по участку нулевого про­вода между этим корпусом и нейтралью трансформатора проходит ток короткого за­тыкания. Падение напряже­ния на этом участке опреде­ляется из закона Ома: . Поскольку сопротивление нулево­го провода при постоянном сечении пропорционально его длине, падение напряжения также пропорционально длине. Поэтому при отсутствии повторного заземления потенциал корпуса, на который происходит короткое замыкание, равен падению напряжения в нулевом проводе [см. выражение (5)].

Потенциалы по длине нулевого провода пропорциональны расстоянию от нулевой точки источника (см. рис. 2, кривая I). Корпусы 1, 2 и 3 также находятся под напряжением относительно земли, равным потенциалам нулевого провода в точках присоеди­нения каждого корпуса. Потенциал корпуса 5 равен потенциалу корпуса 4, на который произошло замыкание, так как за местом короткого замыкания в нулевом проводе тока нет, а значит, и па­дение напряжения отсутствует.

Если нулевой провод имеет повторное заземление (см. рис. 2, кривая II), то потенциал нейтрали не равен нулю; он равен паде­нию напряжения на сопротивлении заземления нейтрали. Потен­циал корпуса поврежденного потребителя равен падению напряже­ния на повторном заземлении. Разность этих потенциалов равна Uк. Потенциалы в нулевом проводе распределяются по прямоли­нейному закону. Потенциал корпуса 3 ниже потенциала корпусов 5 и 4. Корпус 2 находится в данном случае под нулевым потенциа­лом.

Устройство зануления и требования к нему. Основное назначе­ние зануления - обеспечить срабатывание максимальной токовой защиты при замыкании на корпус. Для этого ток короткого замы­кания должен значительно превышать уставку защиты или номи­нальный ток плавких вставок.

Согласно ПУЭ ток однофазного короткого замыкания должен превышать не менее чем в три раза номинальный ток плавкой вставки ближайшего предохранителя или ток срабатывания расцепителя автоматического выключателя с обратно зависимой от тока характеристикой. При защите сети автоматическими выключа­телями, имеющими только электромагнитный расцепитель (отсеч­ку), нулевой защитный провод должен быть выбран таким обра­зом, чтобы в цепи «фаза-нуль» обеспечивался ток короткого за­мыкания, равный величине тока уставки мгновенного срабатыва­ния, умноженный на коэффициент, учитывающий разброс (по завод­ским данным), и на коэффициент запаса 1,1. При отсутствии за­водских данных для автоматов с номинальным током до 1000 А кратность тока короткого замыкания относительно величины ус­тавки следует принимать равной 1,4; для автоматов с номиналь­ным током более 125 А она составляет 1,25. Полная проводимость нулевых защитных проводников во всех случаях должна быть не менее 50% проводимости фазного провода. В случаях когда эти требования не удовлетворяются, отключение при замыканиях на корпус должно обеспечиваться при помощи специальных защит (например, устройством защитного отключения).

Нулевой защитный провод должен иметь надежные соедине­ния, и должна обеспечиваться непрерывность цепи от каждого кор­пуса до нейтрали источника. Поэтому соединения нулевого провода до защищаемого корпуса выполняются сварными. Нулевой защит­ный провод соединяется со всеми заземленными металлическими конструкциями, создающими параллельные цепи короткого замы­кания: металлическими конструкциями зданий, подкрановыми пу­тями, стальными трубами электропроводок, свинцовыми и алюми­ниевыми оболочками кабелей, металлическими трубопроводами, проложенными открыто, исключая трубопроводы для горючих и взрывоопасных смесей. Эти проводники могут служить единствен­ным нулевым проводом, если по проводимости они удовлетворяют приведенным выше требованиям.

Чтобы обеспечить непрерывность цепи зануления, запрещается установка в нулевой провод предохранителей и выключателей. Это допускается только в том случае, если выключатель вместе с ну­левым проводом размыкает и все фазные провода.

Зануление однофазных потребителей, например светильников, должно осуществляться специальным защитным проводником (или жилой кабеля), который не может одновременно служить прово­дом для рабочего тока (см. рис. 1, корпус 2). Повторные за­земления нулевого провода должны выполняться на концах ответвлений воздушных линий или ответвлений длиной более 200 м, также на вводах в здания, электроустановки которых подлежат занулению.

Сопротивление заземляющих устройств, к которым присоеди­нены нейтрали трансформаторов или генераторов, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линей­ных напряжениях 660, 380 и 220 В источника трехфазного тока. Общее сопротивление растеканию заземлителей всех повторных за­землений нулевого рабочего провода каждой воздушной линии в любое время года должно быть не более 5, 10 и 20 Ом соответ­ственно при линейных напряжениях 600, 220, 127 В. При этом со­противление растеканию заземлителя каждого из повторных за­землений нулевого рабочего провода должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях. Проводники для повторных заземлений нулевого провода должны иметь пропуск­ную способность не менее 25 А.

Расчет зануления. Цель расчета зануления — определить сече­ние нулевого провода, удовлетворяющее условию срабатывания максимальной токовой защиты. Уставка защиты определяется мощ­ностью подключенной электроустановки. Согласно требованиям ПУЭ, ток короткого замыкания должен превышать уставку за­щиты. Например, ток короткого замыкания, необходимый для пе­регорания плавкой вставки предохранителя, определяется как Iк ≥ 3·Iн , где Iн — номинальный ток плавкой вставки.

Расчетная величина тока короткого замыкания определяется из выражения (1) с учетом сопротивления петли «фаза — нуль»:

;

.

Таблица 1. Расчетные сопротивления сухих трансформаторов при вторичном напряжении 400/230 В

Мощность трансформатора, кВ·А

Схема соединения обмоток

,Ом

Мощность трансформатора, кВ·А

Схема соединения обмоток

,Ом

Мощность трансформатора, кВ·А

Схема соединения обмоток

,Ом

160

Δ/Yн

0,055

320

Y/Yн

0,0847

630

Δ/Yн

0,014

180

Y/Yн

0,151

400

Δ/Yн

0,022

750

Y/Yн

0,0364

250

Δ/Yн

0,0354

560

Y/Yн

0,0434

1000

Δ/Yн

0,009

Сопротивления трансформаторов приведены в табл. 1. Эта таблица составлена с учетом данных заводов-изготовителей, ВЭИ и ВНИИтяжпромэлектропроекта. Приведенные в ней данные сле­дует рассматривать как приближенные, пригодные для практиче­ских расчетов, не требующих высокой точности. Следует отметить, что у трансформаторов с соединением обмоток Δ/Yн сопротивление ниже, чем у трансформаторов с соединением обмоток Y/Yн. Это следует учитывать при выборе трансформаторов. Для трансформа­торов со вторичным напряжением 230/133 В можно воспользоваться данными табл. 1 и ГОСТ 401—41, уменьшив их в три раза.

Сопротивления трансформаторов, выполненных в соответствии с отмененными ГОСТ 401—41, имеют значения, приведенные ниже:

Мощность трансформатора, кВ·А

20

30

50

100

130

320

560

1000

,Ом

1,44

1,11

0,722

0,358

0,203

0,117

0,071

0,042

Сопротивление петли «фаза — нуль»

,

где Rф— активное сопротивление фазного провода; Rн — активное сопротивление нулевого провода; Хп— индуктивное сопротивление петли «фаза — нуль».

Для медных и алюминиевых проводов активное сопротивление определяется из формулы

.

Индуктивное сопротивление петли «фаза-нуль» равно сумме реактивных сопротивлений фазного Хф и нулевого Хн проводов и сопротивления взаимоиндукции Х'п между этими проводами (внеш­нее сопротивление):

.

Индуктивные сопротивления медных и алюминиевых проводов малы и ими можно пренебречь. Для стальных проводов активные и реактивные сопротивления принимаются по справочным табли­цам при соответствующих плотностях тока. Сопротивление взаи­моиндукции между проводами

,

где μо — магнитная проницаемость воздуха, равная 4·10-7 Гн/м; l — длина линии, м; d — расстояние между проводами, м; D — диа­метр провода, мм.

Обычно при отдельно проложенных нулевых проводах прини­мают 0,6l; при прокладке кабелем или в стальных трубах зна­чением можно пренебречь.

В практике проектирования принято величины и Zп склады­вать арифметически. Это дает небольшую погрешность (до 5%) в сторону уменьшения тока короткого замыкания, т. е. в сторону запаса.

Заземление нейтрали и повторные заземления рассчитываются по методике, изложенной выше. Для определения напряжений от­носительно земли из выражений (6) и (7) принимают:

;

Контроль зануления. Устройство зануления проверяется при вводе электроустановки в эксплуатацию, периодически в процессе работы и после ремонта. Внешний осмотр устройства зануления производится аналогично осмотру заземляющего устройства. Для измерения сопротивления петли «фаза-нуль» можно применить любой прибор; для измерения малых сопротивлений — измеритель заземлений МС-08, омметр М372 и др. Сопротивления заземлений нейтрали и повторных заземлений нулевого провода измеряются прибором МС-08.