
- •Билет № 1
- •1.Способы нарезания зубьев конических шестерён. Маршрут обработки, оборудование, типы применяемых приспособлений, режущий инструмент, режимы резания для одной из операций.
- •2. Опишите основные законы и укажите закономерности развития техники.
- •I. Закон корреляции параметров однородного ряда технических объектов
- •II. Законы симметрии технических объектов
- •Закон двусторонней симметрии
- •III. Закон гомологических рядов
- •IV. Закон расширения множества потребностей-функций
- •V. Закон прогрессивной эволюции техники
- •VI. Закон соответствия между функцией и структурой
- •Закономерности функционального строения обрабатывающих (технологических) машин
- •3. Автоматич. Линии; гибкие производственные системы. Их стр-ра, возможности использования в техпроцессах.
- •Билет№2
- •1. Алгоритм энергетического расчёта объёмных приводов.
- •2. Критерии развития
- •3. Основные понятия теории автоматического управления
- •Билет№3
- •2.Оформление потребности и целей проектирования. Определение основных признаков объекта проектирования. Оформление и согласование тз. Процедуры на стадии технического задания.
- •3.Кулачковые системы программного управления.
- •Билет № 4
- •1. Техпроцесс обработки цилиндрических шестерен. Маршрут обработки, оборудование, типы приспособлений, режущий инструмент, режимы резания для одной из операций.
- •2. Процедурная модель проектирования.( Ярушин стр. 108)
- •3.Как вы представляете себе общую структуру объёмных приводов? Приведите их классификацию.
- •Билет № 5
- •1. Техпроцесс изготовления деталей из термореактивных пластмасс. Маршрут обработки, оборудование, типы применяемых приспособлений.
- •Способы изготовления деталей
- •2. Конструктивные методы обеспечения сборки деталей, узлов, агрегатов, изделий.
- •3.Системы чпу: позиционные, контурные, замкнутые, разомкнутые.
- •Билет №6
- •1. Техпроцесс обработки колец. Маршрут обр., обор-е, типы приспособ., реж. Инстр., режимы резания для одной из операций.
- •2. Схема построения кб предприятия на основе технологии сквозного проектирования.
- •Билет №7
- •1. Технологический процесс обработки дисков. Маршрут обработки, оборудование, типы применяемых приспособлений, режущий инструмент, режимы резания для одной из операций.
- •2. Выбор конструкции изделия. Конструктивная переемственность. Компонование. Совершенство конструктивной схемы. Компактность конструкции. Рациональный выбор параметров оборудования.
- •3. Состав и количество основного оборудования в поточном и не поточном производствах.
- •Билет№8.
- •2. Экономические основы создания оборудования. Полезная отдача. Долговечность. Эксплуатационная надёжность.
- •3. Техническое нормирование. Норма времени, норма выработки. Определение нормы времени. Организация технического нормирования.
- •Билет № 9
- •2. Процедуры проектирования на стадии технических предложений. Поиск возможных технических решений. Анализ и выбор решений. Содержание технического предложения.
- •Билет№10.
- •1. Методы сборки в машиностроении. Устройство коробки скоростей токарного станка и порядок её сборки.
- •Рациональные сечения
- •3. Геометрическая задача управления. Устройство чпу. Логическая задача управления. Программируемые контроллеры.
- •Билет №11
- •1. Базы и базирование. Виды баз. Правило шести точек. Приведите примеры базирования корпусной детали и детали типа вала.
- •Классификация баз.
- •Правило 6-ти точек:
- •2. Процедуры на стадиях эскизного и технического проектов. Выбор параметров объекта проектирования. Цели, состав и последовательность выполнения эскизного проекта.
- •3.Основные понятия и определения.
- •Порядок проектирования:
- •1. Предпроектные работы
- •2. Задание на проектирование
- •3. Рабочий проект (проект) и рабочая документация
- •Технологический процесс как основа создания производственной системы
- •Билет№12.
- •4.1.1. Основы литейного производства
- •3.Кинематика поршневых насосов. Неравномерность подачи и способы её выравнивания Билет№13.
- •2. Метод системотехнического проектирования. Проектирование систем «человек-машина». Морфологический анализ и синтез технических решений. Современные тенденции при проектировании оборудования.
- •3. Организация технологической подготовки производства и процесс перехода на выпуск новой продукции.
- •Билет №14
- •Билет № 15
- •1. Нарезание зубьев цилиндрических зубчатых колес методом копирования дисковыми и пальцевыми фрезами
- •5. Протягивание зубьев зубчатых колес
- •2. Проектирование как вид трудовой деятельности.
- •3. Функционально-стоимостной анализ
- •Билет№16.
- •Средства для контроля, диагностики и адаптивного управления станочным оборудованием.
- •Фазы информационных преобразований для станка с счпу
- •Структура управляющих программ для станков с чпу
- •3.Радиально-поршневые гидромашины. Их принцип действия и кинематика
- •Билет№17.
- •1.Обработка шлицев на валах.
- •Конструкция составных резцов
- •2. Гидроцилиндры. Виды гидроцилиндров. Элементы конструкции, способы торможения, алгоритм выбора параметров и размеров гидроцилиндров
- •3. Проектирование транспортной системы. Техническое обслуживание производственной системы.
- •3.1. Средства и виды транспорта
- •3.2. Выбор вида цехового транспорта
- •3.3. Определение потребного количества транспортных средств
- •3.4. Проектирование ремонтно-механических цехов
- •Билет № 18.
- •1. Технико-экономические показатели и критерии работоспособности металлорежущих станков.
- •Виды резцов
- •2. Критерии жёсткости. Удельные показатели жёсткости. Конструктивные способы повышения жёсткости. Сопротивление усталости. Контактная прочность.
- •Билет №19.
- •1. Кинематика резания. Инструментальные материалы, их физико-механические свойства и выбор. Формообразование поверхности на станках.
- •2. Иерархия описания технических систем и технических объектов.
- •Описание физической операции (фо) формализованно можно представить состоящим из трех компонентов:
- •3. Принципы размещения основного оборудования на производственных участках.
- •Билет №20
- •1. Cтанки для абразивной обработки.
- •2. Крепление осей
- •3. Схемы дроссельного регулирования гидропривода при последовательном и параллельном расположении дросселя на напорной и сливной линиях. Достоинства и недостатки схем.
- •1. Схема с последовательным расположением дросселя на напорной линии.
- •2. Схема с последовательным расположением дросселя на сливной линии.
- •Билет№21
- •1. Сверлильные и расточные станки, их типы и основные характеристики. Назначение геометрии инструмента и оптимальных режимов резания при точении, сверлении.
- •2. Масса и материалоёмкость конструкции. Рациональные сечения. Равнопрочность. Прочность и жёсткость конструкции. Уточнение расчётных напряжений. Способы упрочнения материалов.
- •3. Стадии разработки сапр тп. Описание отечественных сапр тп.
- •Описание отечественных сапр.
- •Билет№22
- •1.Фрезерные и многоцелевые станки для обработки корпусных деталей.
- •2. Расчленение процесса проектирования
- •3. Особенности проектирования универсальных автоматических и адаптивных сборочных приспособлений и инструмента.
- •Требования, предъявляемые к автоматическим приспособлениям:
- •Билет №23
- •Понятие о поверхностном слое, возникающем при резании.
- •2. Цели, задачи и общие правила конструирования. Сходство и различие между проектированием и конструированием.
- •3.Кавитация в объёмных гидравлических машинах. Кавитационные характеристики насосов
- •Центробежные насосы. Кавитация в уплотнении рабочего колеса
- •Билет №24
- •2. Процедуры проектирования на стадии технических предложений. Поиск возможных технических решений. Анализ и выбор решений. Содержание технического предложения.
- •Билет№25.
- •1.Проблемы автоматизации технологической подготовки производства. Инструменты для автоматизированного производства.
- •2. Цели, задачи и общие правила конструирования. Сходство и различие между проектированием и конструированием.
- •Билет№26.
- •1.Станки токарной группы. Загрузочно-ориентирующие устройства в технологической оснастке и их расчёт.
- •Токарно-винторезный станок
- •Токарно-карусельные станки
- •Лоботокарный станок
- •Токарно-револьверный станок
- •Автомат продольного точения
- •Многошпиндельный токарный автомат
- •Токарно-фрезерный обрабатывающий центр
- •Станки с чпу
- •История токарного станка
- •2. Синтез физических принципов действия. Фонд физико-технических эффектов. Поиск принципов действия по заданной физической операции.
- •Фрагмент иерархического словаря функций
- •Монолитно-модульная структура
- •Модульно-иерархическая структура
- •Температура резания и методы её определения.
- •Зубообрабатывающие станки для обработки цилиндрических и конических колес.
- •Билет№27.
- •1.Резьбо-фрезерные и резьбо-нарезные автоматы Классификация резьбообрабатывающих станков
- •Технические характеристики резьбонарезного станка мн56
- •Станок резьбонарезной модель 535 с автоматическим патроном
- •2.Правила конструирования уплотнений для подвижных и неподвижных соединений. Примеры применения уплотнений
- •3.Контрольно—измерительные устройства, устанавливаемые на технологической оснастке в автоматизированном производстве.
- •Билет №28
- •2. Процедуры на стадиях эскизного и технического проектов. Выбор параметров объекта проектирования. Цели, состав и последовательность выполнения эскизного проекта.
- •Билет № 29
- •3.Фрезы
- •Острозаточенные фрезы.
- •Билет №30
- •1. Шлифовальные станки
- •2. Крепление осей
- •3.Гидравлические дроссели. Принципы действия и устройство
2.Правила конструирования уплотнений для подвижных и неподвижных соединений. Примеры применения уплотнений
Контактные уплотнения.
Сальники принадлежат к числу отживающих систем уплотнения. Их основной недостаток — повышенный износ, сопровождающийся потерей уплотнительных свойств, и неприспособленность к высоким окружным скоростям. Все же благодаря простоте и дешевизне сальники до сих пор применяют в узлах неответственного назначения.
Сальник представляет собой кольцевую полость вокруг вала, набитую уплотняющим материалом. Для набивки применяют хлопчатобумажные ткани, очесы, шнуры, вываренные в масле, фетр, асбест и подобные материалы с добавлением металлических порошков (свинца, баббита), графита, дисульфида молибдена и других самосмазывающихся веществ.
Гидропластовые уплотнения. Часто применяют сальники с уплотняющим элементом в виде втулки из термопластов, например из поливинилхлоридов. Гидропластовую втулку заключают в замкнутое кольцевое пространство в корпусе. Зазор между валом и отверстием делают минимальным. Уплотняющий элемент затягивают на валу винтом, действующим на гидропласт через притертый плунжер; давление плунжера, передаваясь всей массе гидропласта, заставляет втулку плотно охватывать вал.
Манжетные уплотнения. Манжета представляет собой выполненное из мягкого упругого материала кольцо с воротником, охватывающим вал. Под действием давления в уплотняемой полости воротник манжеты плотно охватывает вал с силой, пропорциональной давлению. Для обеспечения постоянного натяга воротник стягивают на валу кольцевой пружиной.
Армированные манжеты для валов. Эти уплотнения представляют собой самостоятельную конструкцию, целиком устанавливаемую в корпус; манжету изготовляют из синтетических материалов, что позволяет придать ей любую форму; воротник манжеты стягивается на валу кольцевой витой цилиндрической пружиной (браслетной пружиной) строго регламентированной силой.
Уплотнение разрезными пружинными кольцами надежно, оно может держать большие перепады давления и при правильном подборе материалов долговечно.
Уплотнения резиновыми кольцами, вводимыми в канавки вала или промежуточной втулки, имеют ограниченное применение. Недостатки уплотнений резиновыми кольцами - ненадежность работы, быстрый износ резины в процессе эксплуатации, неопределенность сил прижатия.
Бесконтактные уплотнения.
Щелевые уплотнения. Наиболее простым видом бесконтактного уплотнения является кольцевая щель между валом и корпусом. Уплотняющая способность кольцевой щели пропорциональна ее длине и обратно пропорциональна величине зазора.
Уплотнения отгонной резьбой применяют для герметизации полостей, содержащих жидкости. На валу или во втулке (или здесь и там одновременно) выполняют резьбу (обычно многозаходную). Направление резьбы должно быть согласовано с направлением вращения вала так, чтобы витки отгоняли уплотняемую жидкость, например масло, в корпус. Уплотнение - нереверсивное; при перемене направления вращения витки гонят жидкость в обратном направлении из корпуса.
Гребешковые уплотнения. Цель установки гребешковых уплотнений - разбить масляную пленку, ползущую по валу, и отбросить масло действием центробежных сил в кольцевую полость, откуда оно стекает в корпус по дренажным отверстиям.
Уплотнение отражательными дисками. Отражательные диски устанавливают перед щелевыми уплотнениями с целью преградить доступ масла в щель и отогнать действием центробежной силы частицы масла, проникающие в щель.
Торцевые уплотнения.
Торцовые уплотнения принадлежат к числу контактных уплотнений. Уплотняемая среда (жидкость, газ) может просачиваться через уплотнение в двух направлениях: через торец диска и через кольцевой зазор между диском и валом.
Очевидно, торцовое уплотнение должно состоять из двух уплотнений: торцового и радиального.
Торцовое уплотнение обладает свойством самоприрабатываемости; при правильном выборе материала трущихся поверхностей и подводе незначительного количества смазки уплотнение может работать в течение долгого времени при хорошем состоянии поверхностей контакта, обеспечивающем надежное уплотнение.
Комбинированные уплотнения.
Для повышения надежности устанавливают последовательно два (и более) уплотнения разноге вида. Некоторые виды уплотнений хорошо взаимосвязываются друг с другом и встраиваются в один узел без значительного увеличения габаритов.
Уплотнения с промежуточной камерой.
Уплотнение масляных полостей вызывает большие трудности в случае, когда давление в полости значительно превышает давление за уплотнением.
Радикальным средством является применение двойных уплотнений, разделенных промежуточной камерой, в которую подводится воздух (суфлерные уплотнения).
Лабиринтные уплотнения.
Лабиринтные уплотнения применяют для уплотнения полостей, заполненных газом и паром. Действие их основано на торможении (завихрении) газа в узкой кольцевой щели с последующим расширением в смежной кольцевой камере большого объема. В кольцевой щели давление преобразуется в скоростной напор; по выходе газа из щели давление восстанавливается, но только частично; часть давления расходуется на необратимые потери при завихрении-расширении. Чем больше эти потери (т. е. чем меньше сечение щели и острее образующие ее кромки), тем меньшая доля давления восстанавливается в камере и, следовательно, тем эффективнее работает уплотнение.
Лабиринтные уплотнения применяют при высоких окружных скоростях и температурах, когда исключена возможность установки контактных уплотнений.
Гидравлические центробежные уплотнения.
Гидравлическое центробежное уплотнение состоит из крыльчатки, вращающейся в замкнутой кольцевой полости, в которую залита уплотняющая жидкость (масло, вода и т. д.). Центробежной силой жидкость прижимается к периферии полости.
Уплотнение возвратно-поступательно движущихся деталей.
Возвратно-поступательно движущиеся поршневые штоки, скалки насосов и т. д. уплотняют чаще всего сальниками с набивкой из материала, соответствующего условиям работы уплотнения
Уплотнение сегментными кольцами. Сегментные металлические кольца - это кольца, разделенные в радиальном направлении на несколько частей (обычно на три). Такое уплотнение сложно в изготовлении и требует тщательного монтажа, но оно надежно и способно выдерживать весьма высокие давления и работать при высоких температурах.
Уплотнение поршней. Поршневые кольца. Поршни небольшого диаметра (плунжеры гидравлических, масляных, топливных насосов и т. п.) уплотняют притиркой к поверхностям цилиндров. Уплотнение улучшают введением лабиринтных канавок.
Поршневые кольца. Поршневое кольцо представляет собой разрезное металлическое кольцо (обычно прямоугольного сечения), устанавливаемое в канавках поршня.
Поршневые кольца при работе прижимаются к стенкам цилиндра не только силами собственной упругости, но и давлением рабочей жидкости (или газа), проникающей в поршневые канавки и действующей на тыльную поверхность поршневого кольца. Это давление может во много раз превышать давление, вызванное силами собственной упругости колец; оно играет основную роль в уплотняющем действии поршневых колец. Натяг колец при вводе в цилиндр является лишь предварительным условием создания этого давления.
Уплотнение неподвижных соединений.
Листовые прокладки. Для обеспечения герметичности плоские стыки чаще всего уплотняют листовыми прокладками из упругого материала. Как правило, на прокладках ставят крышки маслосодержащих резервуаров, работающих под давлением или вакуумом, фланцы трубопроводов и т. д. На мягких прокладках собирают также части корпусов механических передач (в тех случаях, когда нет необходимости выдерживать точное взаимное расположение частей).
Задача уплотнения таких жестких стыков решается несколькими способами. Неразборные и редко разбираемые соединения уплотняют герметизирующими составами, например бакелитом, белилами, суриком, жидким стеклом и т. д.
Уплотнение ввёртных деталей. Самый простой способ уплотнения ввёртных деталей (штуцеров, пробок) - смазывание витков резьбы герметизирующими составами.
Не рекомендуется применяемая иногда на практике (особенно в ремонтных условиях) «подмотка» последних (ближайших к торцу ввёртной детали) витков резьбы ниткой, промазанной суриком, разведенным на масле, и т. п.
Цилиндрические соединения, собираемые по посадкам с натягом, как правило, не нуждаются в уплотнении; натяг сам по себе надежно уплотняет соединение даже при значительном перепаде давления. Подлежат уплотнению соединения, собранные по посадкам с зазором или переходным посадкам и подверженные действию давления или работающие под напором столба жидкости.