
- •В.П. Казанцев Общая энергетика
- •Оглавление
- •4.6. Природоохранные проблемы гидроэнергетики и их учет при проектировании гэс ……………….. 182
- •Принятые сокращения
- •Введение
- •1. Общие вопросы энергетики
- •1.1. Энергетические ресурсы земли и их использование
- •1.2. Топливно–энергетический комплекс России
- •Единая энергетическая система России
- •Преимущества образования еэс заключаются в повышении его экономичности при одновременном повышении надежности и качества электроснабжения потребителей.
- •1.4. Электрические станции
- •1.5. Электрические и тепловые сети
- •1.6. Потребители электрической энергии
- •1.7. Графики электрических и тепловых нагрузок энергосистем
- •1.8. Балансы мощности и энергии энергосистем
- •1.9. Традиционное топливо и его характеристики
- •Теоретические основы работы энергетических установок
- •2.1. Теплопередача, виды теплообмена
- •2.2. Основные термодинамические процессы и законы (начала) термодинамики
- •Термодинамические циклы тепловых двигателей
- •2.3.1. Термодинамический цикл Карно
- •2.3.2. Термодинамический цикл Ранкина
- •2.3.3. Энергетические показатели цикла Ранкина
- •Тепловые и атомные энергетические установки
- •3.1. Тепловые электростанции
- •3.1.1. Тепловые схемы тэс
- •3.1.1.1. Тепловые схемы кэс
- •3.1.1.2. Когенерация. Тепловые схемы тэц
- •3.1.2. Технологические схемы тэс
- •3.1.3. Компоновочные схемы тэс
- •3.1.4. Основное оборудование тэс
- •3.1.4.1. Паровые котлы
- •3.1.4.2. Паровые турбины
- •3.1.4.3. Электрические генераторы и трансформаторы
- •3.1.5. Вспомогательное оборудование тэс
- •3.1.5.1. Насосы и газодувные машины
- •3.1.5.2. Главные паропроводы и питательные трубопроводы тэс
- •3.1.5.3. Системы регенеративного подогрева питательной воды и промежуточного перегрева
- •3.1.5.4. Системы подогрева сетевой воды
- •3.2. Атомные электростанции
- •3.2.1. Принцип действия и типы атомных электростанций
- •3.2.2. Ядерные реакторы
- •3.2.2.1. Принцип работы и классификация ядерных реакторов
- •3.2.2.2. Реакторы на тепловых и быстрых нейтронах
- •3.2.3. Ядерное топливо
- •3.2.4. Тепловые схемы аэс
- •3.2.5. Технологические схемы и компоновка аэс
- •3.2.6. Экономические аспекты атомной энергетики
- •3.2.7. Экология атомной энергетики
- •3.2.8. Перспективы развития ядерной и термоядерной энергетики
- •4. Гидроэнергетические установки
- •4.1. Гидростатика и гидродинамика
- •4.2. Гидроэнергоресурсы и состояние гидроэнергетики России
- •4.3. Классификация, принцип работы и характеристики гидроэнергетических установок
- •4.4. Схемы использования гидравлической энергии
- •4.5. Основное оборудование гэс
- •4.5.1. Гидротурбины
- •4.5.2. Гидрогенераторы
- •4.6. Природоохранные проблемы гидроэнергетики и их учет при проектировании гэс
- •5. Нетрадиционные источники энергии и их использование
- •5.1. Состояние и перспективы нетрадиционной энергетики
- •5.2. Энергия ветра и ветроэлектрические станции
- •5.2.1. Ветроэнергетические установки
- •5.2.2. Основные проблемы и перспективы ветроэнергетики
- •5.3. Энергия Земли и геотермальные электростанции
- •5.4. Энергия Мирового океана и ее использование
- •5.4.1. Гидротермальные электростанции
- •5.4.2. Волновые электростанции
- •5.4.3. Приливные электростанции
- •5.4.4. Электростанции морских течений
- •5.5. Энергия Солнца и солнечные электростанции
- •5.6. Водородная энергетика
- •5.7. Вторичные энергоресурсы
- •5.8. Биомасса как возобновляемый источник энергии
- •Прямое сжигание биомассы
- •2. Получение биогаза
- •3. Использование отходов сельскохозяйственного производства
- •Заключение
- •Список литературы
5.7. Вторичные энергоресурсы
Прогрессивное направление и развитие промышленности – создание безотходных производств, по технологии которых используются все элементы производственного процесса, а также энергия реакции технологических процессов для получения полезной продукции. Однако технологические процессы сопровождаются материальными и энергетическими отходами.
На технологический процесс расходуется определенное количество топлива, электрической и тепловой энергии. Кроме того, сами технологические процессы протекают с выделением различных энергетических ресурсов – теплоносителей, горючих продуктов, газов и жидкостей с избыточным давлением. Далеко не все количество этой энергии используется в технологическом процессе или агрегате; такие неиспользуемые в процессе (агрегате) энергетические отходы называют вторичными энергетическими ресурсами (ВЭР).
Количество образующихся вторичных энергетических ресурсов достаточно велико. Поэтому полезное их использование – одно из важнейших направлений экономии энергетических ресурсов. Утилизация этих ресурсов связана с определенными затратами, в том числе и капитальными, поэтому возникает необходимость экономической оценки целесообразности такой утилизации.
Под ВЭР понимают энергетический потенциал продукции, отходов, побочных и промежуточных продуктов, образующихся при технологических процессах, в агрегатах и установках, который не используется в самом агрегате, но может быть частично или полностью использоваться для энергосбережения других агрегатов (процессов).
ВЭР промышленности делятся на три основные группы:
1) горючие;
2) тепловые;
3) избыточного давления.
Горючие (топливные) ВЭР – химическая энергия отходов технологических процессов химической и термохимической переработки сырья. К таким отходам относят:
побочные горючие газы плавильных печей (доменный газ, газ шахтных печей, конверторный газ и т.д.);
горючие отходы процессов химической и термохимической переработки углеродистого сырья (синтез, отходы электродного производства, горючие газы при получении исходного сырья для пластмасс и т.д.);
твердые и жидкие топливные отходы, непригодные для дальнейшей технологической переработки;
отходы деревообработки, целлюлозно–бумажного производства.
Тепловые ВЭР – это тепло отходящих газов при сжигании топлива, тепло воды или воздуха, использованных для охлаждения технологических агрегатов и установок, теплоотходов производства, например, горячих металлургических шлаков.
Одним из весьма перспективных направлений использования тепла слабо нагретых вод является применение так называемых тепловых насосов, работающих по тому же принципу, что и компрессорный агрегат в домашнем холодильнике. Тепловой насос отбирает тепло от сбросной воды и аккумулирует тепловую энергию при температуре около 90 °С, иными словами, эта энергия становится пригодной для использования в системах отопления и вентиляции.
Следует отметить, что пока еще большое количество тепловой энергии теряется при так называемом "сбросе" промышленных сточных вод, имеющих температуру 40–60 °С и более, при отводе дымовых газов котельных установок с температурой 200–300 °С, а также в вентиляционных системах промышленных и общественных зданий, животноводческих комплексов (температура удаляемого из этих помещений воздуха не менее 20–25 °С).
Особенно значительны объемы тепловых вторичных ресурсов в черной и цветной металлургии, в химической, газовой и других отраслях промышленности.
Вторичные энергетические ресурсы избыточного давления преобразуются в механическую энергию, которая или непосредственно используется для привода механизмов и машин или преобразуется в электрическую энергию.
Примером применения этих ресурсов может служить использование избыточного давления доменного газа в утилизационных бескомпрессорных турбинах для выработки электрической энергии.
ВЭР имеются также на электрических станциях и представляют собой тепловые отходы или потери тепла, получаемые в процессе энергопроизводства. На гидроэлектростанциях такими тепловыми отходами являются только тепловыделения в гидрогенераторах станций.
ВЭР электростанций по своей величине значительно меньше, чем на промышленных предприятиях, и непрерывно уменьшаются по мере повышения экономичности энергопроизводства.
Различают следующие основные направления использования потребителями ВЭР:
топливное – непосредственно в качестве топлива;
тепловое – непосредственно в качестве тепла или выработки тепла в утилизационных установках;
силовое – использование электрической или механической энергии, вырабатываемой из ВЭР в утилизационных установках;
комбинированное, т.е. тепловая и электрическая (механическая) энергия, одновременно вырабатываемые из ВЭР в утилизационных установках.
Показатели использования ВЭР.
Для оценки выхода и использования ВЭР применяются следующие показатели:
1) Выход ВЭР – количество ВЭР, образующихся в процессе производства в данном технологическом агрегате за единицу времени.
Выработка энергии за счет ВЭР – количество энергии, получаемое при использовании ВЭР в утилизационной установке. Выработка энергии отличается от ее выхода на величину потерь тепла в утилизационной установке. Различают возможную, экономически целесообразную, планируемую и фактическую выработки энергии.
Использование ВЭР – количество используемой у потребителей энергии, вырабатываемой за счет ВЭР в утилизационных установках.
4) Экономия топлива за счет ВЭР – количество первичного топлива, которое экономится в результате использования ВЭР.