
- •В.А. Панов Автоматизация проектирвания средств и су. Физико-технические эффекты
- •Введение
- •Понятие фтэ
- •1.2. Формализация описания фтэ
- •Дерево фтэ
- •Синтез физического принципа действия
- •Алгоритм синтеза фпд
- •Классификация фтэ
- •Описание фтэ
- •2.1. Механические эффекты
- •2.1.1. Центробежная сила
- •2.1.2. Гироскопический эффект
- •2.1.3. Гравитация
- •2.1.4. Электропластический эффект в металлах
- •2.2.Молекулярные явления
- •2.2.1. Тепловое расширение
- •2.2.2. Капиллярные явления
- •2.2.3. Фазовые переходы
- •Гидростатика и гидродинамика
- •2.3.1. Сорбция
- •2.3.2. Диффузия
- •2.3.3. Осмос
- •2.3.4. Цеолиты
- •Гидростатика и гидродинамика
- •Колебания и волны
- •2.5.1. Резонанс
- •2.5.2. Реверберация
- •2.5.3. Акустомагнетоэлектрический эффект
- •Волновое движение
- •2.6.4. Дисперсия волн
- •2.6.5Электрические и электромагнитные явления
- •2.7.1.Электрическое поле
- •2.7.1.1.Джоуля-Ленца закон
- •2.7.1.2. Закон Кулона
- •2.7.1.3. Электростатическая индукция
- •2.7.2.1. Контур с током в магнитном поле
- •Сила Лоренца
- •Магнитострикция
- •Электромагнитное поле
- •Эдс индукции
- •Взаимная индукция
- •Индукционный нагрев
- •Диэлектрические свойства вещества
- •Пьезоэлектрический эффект
- •2.8.2. Обратный пьезоэлектрический эффект
- •Пироэлектрики
- •Электреты
- •Сегнетоэлектрики
- •Магнитные свойства вещества
- •Закон Кюри
- •Виллари эффект
- •Магниторезистивный эффект
- •Баркгаузена эффект
- •Эффект Эйнштейна – де-Хааза
- •Электрические свойства вещества
- •Тензорезистивный эффект
- •Терморезистивный эффект
- •Термоэлектрические и эмиссионные явления
- •2.11.1. Эффект Зеебека
- •2.11.2. Эффект Пельтье
- •2.11.3. Термоэлектронная эмиссия
- •Гальвано- и термомагнитные явления
- •Холла эффект
- •2.12.2. Эттинсгаузена эффект
- •Электрические разряды в газах
- •Электрокинетические явления
- •Свет и вещество
- •2.15.1. Полное внутреннее отражение
- •Фотоэлектрические и фотохимические явления
- •2.16.1. Фотоэффект
- •2.16.2. Дембера эффект
- •Люминесценция
- •Фотоупругость
- •Электрооптический эффект Керра.
- •Фарадея эффект
- •Эффект Зеемана
- •Дихроизм
- •Явления микромира
- •Электронный парамагнитный резонанс
- •Акустический парамагнитный резонанс
- •Ядерный магнитный резонанс
- •. Фотофорез
- •Стробоскопический эффект
- •Электрореологический эффект
- •Акустоэлектрический эффект
- •Заключение
- •Литература
2.2.1. Тепловое расширение
Входы: температура.
Выходы: длина, объем.
Графическая иллюстрация:
Рис.2.6. Нагревание пластин с разным коэффициентом теплового расширения
Сущность:
Тепловое расширение – увеличение размеров тела при его нагревании (рис.2.6). Это легко объяснимо с позиции механической теории теплоты, поскольку при нагревании молекулы или атомы вещества начинают двигаться быстрее. В твердых телах атомы начинают с большей амплитудой колебаться вокруг своего среднего положения в кристаллической решетке, и им требуется больше свободного пространства. В результате тело расширяется. Также жидкости и газы, по большей части, расширяются с повышением температуры по причине увеличения скорости теплового движения свободных молекул.
Математическое описание:
Основной закон теплового расширения
ΔL=,
где
-
линейный размер тела;
-
величина расширения тела;
- увеличение
температуры тела;
- коэффициент
линейного теплового расширения.
В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.
Применение:
1. А.с. № 471140: Устройство для волочения металлов со смазкой под давлением, содержащее установленные в корпусе рабочую и уплотнительную волоки, образующие между собой и корпусом камеру (в которой находится смазка), отличающееся тем, что с целью упрощения конструкции и повышения производительности, средство для создания в камере высокого давления выполнено в виде нагревательного элемента, расположенного внутри камеры.
2. А.с. № 175190: Устройство для учета количества наливов металла в изложницу, отличающееся тем, что с целью автоматизации процесса учета, оно выполнено в виде корпуса, прикрепленного к изложнице, в полости которого расположено счетное устройство, состоящее из трубки с шариками и биметаллической пластинки, на конце которой укреплен отсекатель, пропускающий при нагреве пластинки шарик, падающий в накопительную емкость.
3. Использование эффекта различного расширения у различных металлов позволило создать тепловой диод.
А.с 518614: Тепловой диод, содержащий входной и выходной теплопроводы, имеющие узел теплового контакта, отличающийся тем, что с целью упрощения конструкции, узел теплового контакта выполнен по типу "вилка-розетка" и вилка выполнена в теле входного, а розетка в теле выходного теплопроводов.
2.2.2. Капиллярные явления
Входы: нет.
Выходы: давление.
Графическая иллюстрация:
Рис. 2.7. Капилляр в сосуде с водой
Сущность:
Капиллярные явления - физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред (явления в жидких средах, вызванные искривлением их поверхности, граничащей с другой жидкостью, газом или собственным паром).
Когда внешние силы отсутствуют или скомпенсированы, поверхность жидкости всегда искривлена. В условиях невесомости ограниченный объём жидкости, не соприкасающейся с др. телами, принимает под действием поверхностного натяжения форму шара. Эта форма отвечает устойчивому равновесию жидкости, поскольку шар обладает минимальной поверхностью при данном объёме, и, следовательно, поверхностная энергия жидкости в этом случае минимальна.
Форму шара жидкость принимает и в том случае, если она находится в другой, равной по плотности жидкости (действие силы тяжести компенсируется архимедовой выталкивающей силой. При нескомпенсированной силе тяжести картина существенно меняется: маловязкая жидкость (например, вода), взятая в достаточном количестве, принимает форму сосуда, в который она налита. Её свободная поверхность оказывается практически плоской, т.к. силы земного притяжения преодолевают действие поверхностного натяжения, стремящегося искривить и сократить поверхность жидкости. Однако по мере уменьшения массы жидкости роль поверхностного натяжения снова становится определяющей: при дроблении жидкости в среде газа или газа в жидкости образуются мелкие капли или пузырьки практически сферической формы.
При контакте жидкости с твёрдыми телами на форму её поверхности существенно влияют явления смачивания, обусловленные взаимодействием молекул жидкости и твёрдого тела. Смачивание означает, что жидкость сильнее взаимодействует с поверхностью твёрдого тела (капилляра, сосуда), чем находящийся над ней газ. Силы притяжения, действующие между молекулами твёрдого тела и жидкости, заставляют её подниматься по стенке сосуда, что приводит к искривлению примыкающего к стенке участка поверхности. Это создаёт отрицательное (капиллярное) давление, которое в каждой точке искривленной поверхности в точности уравновешивает давление, вызванное подъёмом уровня жидкости. Гидростатическое давление в объёме жидкости при этом изменений не претерпевает.
Отрицательное капиллярное давление оказывает стягивающее действие на ограничивающие жидкость стенки. Это может приводить к значительной объёмной деформации высокодисперсных систем и пористых тел — капиллярной контракции. Так, например, происходящий при высушивании рост капиллярного давления приводит к значительной усадке материалов.
Если жидкость в капилляре совершает колебания под влиянием источника ультразвука, то капиллярный эффект резко возрастает, высота столба жидкости увеличивается в несколько десятков раз, значительно возрастает и скорость подъема.
Экспериментально доказано, что в этом случае жидкость толкает вверх не радиационное давление и капиллярные силы, а стоячие ультразвуковые волны. Ультразвук снова и снова как бы сжимает столб жидкости и поднимает его вверх. Открытый эффект уже очень широко используется в промышленности, например, при пропитке изоляционными составами обмоток электродвигателей,
окраске тканей, в тепловых трубах и т.п.
Математическое описание:
–формула Д. Жюрена,
определяет высоту h
капиллярного поднятия жидкости, полностью
смачивающей стенки капилляра;
ρ1 и ρ2 — плотность жидкости 1 и газа 2;
g — ускорение свободного падения;
- поверхностное
натяжение на границе двух сред;
r – радиус кривизны.
Применение.
А.с. 437 568: Способ пропитки капиллярных пористых тел жидкостями и расплавами, например, полимерным связующим, с применением ультразвуковых колебаний, отличающийся тем, что с целью интенсификации процессов пропитки ультразвуковые колебания сообщают пропитываемому телу.