
- •Общая теория авиационных
- •1.2. Области применения реактивных двигателей
- •2. Турбореактивный двигатель (трд)
- •2.1. Принцип создания тяги трд
- •2.2. Изменение параметров рабочего тела и превращения энергии по тракту трд
- •2.3. Основные параметры трд. Тяга трд Основные параметры трд
- •Тяга трд
- •3. Циклы трд
- •3.1. Сущность второго закона термодинамики
- •3.2. Идеальный цикл трд
- •3.2.1. Условия и диаграммы идеального цикла трд
- •3.2.2. Работа идеального цикла трд
- •3.2.3. Термический кпд идеального цикла трд
- •3.2.4. Идеальный цикл со ступенчатым подводом тепла
- •3.3. Действительный (реальный) цикл трд
- •3.3.1. Процессы в действительном цикле
- •3.3.2. Работа действительного цикла трд
- •Внутренняя (индикаторная) работа
- •Эффективная работа цикла трд
- •3.3.3. Эффективный кпд трд
- •Зависимость
- •Зависимость ηe от высоты полета н
- •Зависимость ηe от числа м полета
- •3.3.4. Тяговый (полетный) кпд трд Физический смысл тягового кпд
- •Вывод: Любое воздействие, приводящее к уменьшению разницы между cc и V, приводит к росту ηтяг. Зависимость ηтяг от высоты полета н
- •Зависимость
- •3.3.5. Полный (экономический) кпд
- •3.3.6. Энергетический баланс и потери в трд
- •4. Зависимость удельных параметров трд от параметров рабочего процесса. Основы расчета врд
- •4.1.Зависимость
- •4.2. Зависимость
- •4.3. Зависимости Rуд и сR от кпд процессов сжатия и расширения
- •4.4. Понятие о свободной энергии врд
- •4.5. Основы газодинамического расчета трд
- •5. Ракетные двигатели (рд)
- •5.1. Принцип действия и классификация рд по источнику энергии
- •5.2. Создание тяги в химическом рд
- •5.2.1. Принцип создания тяги рд
- •5.2.2. Расходный комплекс рд
- •5.2.3. Тяговый комплекс рд
- •5.2.4. Мощность рд
- •5.2.5. Удельный расход топлива
- •6. Цикл ракетного двигателя жидкого топлива (жрд)
- •6.1. Диаграмма идеального цикла рд
- •6.2. Работа идеального цикла рд
- •Так как работа цикла расходуется на приращение скорости продуктов сгорания, то есть увеличение их кинетической энергии от ск ≈ 0 до сс, то
- •6.3. Коэффициенты полезного действия цикла рд
- •6.3.1. Энергетические кпд
- •6.3.2. Импульсный кпд
- •6.3.3. Полный кпд
- •7. Реактивное сопло
- •7.1. Условия получения дозвуковых и звуковых скоростей в сопле
- •7.2. Условия получения сверхзвуковых скоростей
- •7.3. Режимы работы сужающегося реактивного сопла
- •7.2. Режимы работы
- •7.4. Режимы работы сверхзвукового реактивного сопла
- •7.5. Назначение и выбор типа рс
- •7.5.1. Сверхзвуковое рс
- •8. Статические характеристики ракетного двигателя
- •8.1. Дроссельные характеристики жрд
- •8.1.1. Особенности глубокого
- •8.2. Высотные характеристики рд
2. Турбореактивный двигатель (трд)
2.1. Принцип создания тяги трд
Принцип создания тяги ТРД основан на увеличении количества движения рабочего тела, проходящего по тракту двигателя. На входе в двигатель (сечение 0–0) (рис. 2.1) секундное количество движения рабочего тела – МвV, на выходе (сечение с–с) – Мгсс, где: сс – скорость истечения газа из ТРД; Мв и Мг – секундные массовые расходы воздуха и газа через входное (0–0) и выходное (с–с) сечения ТРД соответственно, связанные соотношением:
Мг = Мв + Мт – Мв.отб, (2.1)
где Мт – секундный массовый расход топлива, поступающего в камеру сгорания; Мв.отб – масса воздуха, отбираемого в секунду на охлаждение узлов двигателя и другие цели.
Так как Мг ≈ Мв, а сс > V, то Мг сс > МвV, тогда тяга ТРД
R = Мгсс – МвV = Мв(сс – V). (2.2)
Величина R является тягой, определенной по внутренним параметрам ТРД. Часть этой тяги тратится на преодоление внешнего сопротивления ТРД с мотогондолой Хвн, оставшаяся часть Rэф (эффективная тяга) расходуется на совершение полезной тяговой работы (увеличение скорости полета V):
Rэф = R – Хвн. (2.3)
Рис. 2.1. Изменение параметров рабочего тела по тракту ТРД
Из
формулы (2.2) видно, что при V
= 0 тяга имеет максимальное значение
Мвсс.
При увеличении скорости полета
все большая часть кинетической энергии
истекающей струи газа
превращается в полезную тяговую работу
по увеличению скорости полета и величина
избыточной тягиR
уменьшается
.
При достижении скорости полетаV = сс
вся
превратится в полезную тяговую работу,
и дальнейшее увеличение скорости полета
станет невозможным (R
= 0). Скорость V = сс
называется скоростью «вырождения ТРД».
Однако необходимо помнить, что на
полезную тяговую работу
тратится толькоRэф = R
–
Хвн.
Из этого следует, что скорость полета
всегда меньше скорости истечения газа
из сопла и скорость «вырождения ТРД»
достижима только теоретически.
2.2. Изменение параметров рабочего тела и превращения энергии по тракту трд
ТРД включает в себя (см. рис. 2.1):
– воздухозаборник (ВЗ);
– осевой компрессор (ОК);
– камеру сгорания (КС);
– газовую турбину (ГТ);
– реактивное сопло (РС).
В cечении н–н – невозмущенный воздушный поток (см. рис. 2.1).
Далее по тракту двигателя происходят следующие процессы:
между сечениями н–0 – предварительное сжатие за счет торможения воздушного потока в свободно расширяющейся струе газа перед входом в ВЗ;
между сечениями 0–вх – предварительное сжатие (торможение), выравнивание и стабилизация воздушного потока в расширяющемся канале ВЗ;
между сечениями вх–к – основное сжатие воздуха за счет подвода к нему механической работы от вращающихся рабочих лопаток компрессора;
между сечениями к–г – подвод тепла к рабочему телу за счет сжигания в воздухе горючего (авиационный керосин);
между сечениями г–т – расширение газа в ГТ и превращение части энтальпии в крутящий (располагаемый) момент Мт.расп на валу турбины, передаваемый через общий вал на вращение компрессора и привод дополнительных агрегатов;
между сечениями т–с – расширение газа в сопловом канале РС и превращение части энтальпии в кинетическую энергию истекающей струи газа (создание реактивной тяги R).
До сечения н–н (см. рис. 2.1) воздушный поток является невозмущенным. От сечения н–н до сечения вх–вх поток воздуха первоначально тормозится в свободно расширяющейся струе, а затем – в диффузоре ВЗ. Скорость потока с уменьшается, следовательно, уменьшается его кинетическая энергия c2/2. Так как на этом отрезке пути к воздуху не подводится и от него не отводится энергия, то, в соответствии с законом сохранения энергии, уменьшение кинетической энергии c2/2 приводит к возрастанию энтальпии i потока. Увеличение энтальпии сопровождается ростом давления и температуры рабочего тела (воздуха).
От сечения вх–вх до сечения к–к к потоку воздуха подводится механическая энергия от вращающихся лопаток ОК. Воздушный поток сжимается, следовательно, возрастает его давление и температура (энтальпия), но рост энтальпии, в основном, идет за счет подводимой механической работы и лишь частично за счет кинетической энергии самого потока, поэтому скорость потока с уменьшается незначительно.
Так
как расход воздуха постоянный (Мв
=
const),
а его объем уменьшается за счет
существенного увеличения плотности
при сжатии, для сохранения неразрывности
потока необходимо уменьшать площадь
проходного сечения тракта ТРД
для исключения значительного снижения
скорости потока
.
От сечения к–к до сечения г–г к рабочему телу, сжатому в ОК, подводится теплота QКС, выделяющаяся при сжигании в КС топливно-воздушной смеси (ТВС), состоящей из смеси воздуха и авиационного керосина.
Рабочий
процесс в КС организован таким образом,
что статическое давление остается
постоянным, а температура резко возрастает
,
следовательно, резко возрастает энтальпия
за счет подведенной извне энергии
(теплоты).
От сечения г–г до сечения т–т рабочее тело (сжатый и нагретый воздух и газообразные продукты сгорания топлива) расширяется в ГТ. Часть энтальпии превращается в крутящий момент Мт.расп на валу ГТ, который необходим для привода ОК (благодаря ОК ТРД может создавать тягу при V = 0).
Так как ОК сжимает атмосферный (холодный) воздух, а в ГТ расширяется горячий газ, то располагаемая работа, совершаемая расширяющимся газом в ступени ГТ, значительно выше, чем потребная работа сжатия в ступени ОК. Это позволяет одноступенчатой ГТ вращать многоступенчатый компрессор.
От
сечения т–т до сечения с–с происходит
расширение рабочего тела (газа) в РС.
Так как РС – энергоизолированная система
(отсутствует подвод энергии извне и
отвод энергии в окружающую среду), то
при расширении газ совершает внешнюю
механическую работу по разгону потока,
то есть полная энергия рабочего тела
не изменяется, но часть энтальпии
превращается в кинетическую энергию
.