
- •ВВЕДЕНИЕ
- •РАЗДЕЛ ПЕРВЫЙ. ОБОСНОВАНИЕ ПРОЕКТНЫХ РЕШЕНИЙ
- •ГЛАВА 1. КЛАССИФИКАЦИЯ И НОРМЫ ПРОЕКТИРОВАНИЯ АВТОМОБИЛЬНЫХ ДОРОГ
- •1.1 Классификация автомобильных дорог
- •1.2. Нормы проектирования автомобильных дорог
- •1.3. Расчетные скорости, нагрузки и габаритные размеры подвижного состава
- •1.4. Охрана окружающей среды
- •Приложение 1. Список рекомендуемых нормативно-технических документов
- •1.1. Общие стандарты
- •1.2. Грунты, земляное полотно, торф
- •1.3. Асфальтобетонные смеси, битум
- •1.3. Бетон, железобетон. Бетонные смеси, щебень, гравий, песок, цемент, шлаки, шламы и другие материалы
- •1.5. Автомобильные, железные дороги, аэродромы, земляное полотно дорог, мосты и трубы, укрепительные работы (изыскания, проектирование, строительство)
- •1.6. Основания и фундаменты
- •1.7. Изыскания автомобильных, железных дорог, аэродромов
- •1.8. Эксплуатация автомобильных дорог
- •1.9. Геотекстиль
- •1.10. Экология, климатология
- •1.11. Безопасность движения и техника безопасности
- •ГЛАВА 2. ОРГАНИЗАЦИЯ ПРОЕКТИРОВАНИЯ АВТОМОБИЛЬНЫХ ДОРОГ
- •2.1. Общие положения
- •2.2. Предпроектное проектирование
- •2.3. Разработка проектной документации
- •2.4. Разработка рабочих чертежей
- •2.5. Состав проектной документации
- •2.6. Оформление проектной документации
- •Приложение 2.1.
- •Приложение 2.2.
- •Перечень технических документов, подлежащих использованию при разработке обоснования инвестиций
- •Приложение 2.3.
- •Перечень материалов и документов, включаемых в состав обоснования инвестиций (ОИ).
- •Приложение 2.4.
- •Перечень материалов и документов, включаемых в состав обосновывающих материалов инженерного проекта (ИП).
- •ГЛАВА 3. СОВРЕМЕННАЯ ТЕХНОЛОГИЯ ИЗЫСКАНИЙ АВТОМОБИЛЬНЫХ ДОРОГ
- •3.1. Особенности традиционной технологии изысканий автомобильных дорог и ее анализ
- •3.2. Особенности технологии изысканий автомобильных дорог при проектировании на уровне САПР-АД
- •3.3. ГИС-технологии в изысканиях автомобильных дорог
- •3.4. Методы обоснования полосы варьирования конкурирующих вариантов трассы
- •3.5. Цифровое моделирование рельефа, ситуации и геологического строения местности
- •3.6. Виды цифровых моделей местности
- •3.7. Методы построения цифровых моделей местности
- •3.8. Математическое моделирование местности
- •3.9. Задачи, решаемые с использованием цифровых и математических моделей
- •ГЛАВА 4. ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ СТРОИТЕЛЬСТВА АВТОМОБИЛЬНЫХ ДОРОГ И МОСТОВЫХ ПЕРЕХОДОВ
- •4.1. Структура экономического обоснования дорожного строительства
- •4.2. Перспективный парк автомобилей
- •4.3. Прогнозирование перспективной интенсивности движения
- •4.4. Методы оценки общественной эффективности инвестиционных проектов дорожного строительства
- •4.5. Процедуры учета неопределенности
- •4.6. Элементы затрат-выгод инвестиционных проектов дорожного строительства
- •5.1. Геодезические опорные сети
- •5.2. Обозначение пунктов государственных геодезических сетей на местности
- •5.3. Привязка к пунктам государственных геодезических сетей
- •5.4. Планово-высотное обоснование топографических съемок
- •5.5. Электронная тахеометрическая съемка
- •5.6. Наземно-космическая съемка
- •5.7. Наземное лазерное сканирование
- •6.1. Общие сведения об организации и составе инженерно-геологических изысканий
- •6.2. Современные технические средства, применяемые при инженерно-геологических изысканиях
- •6.3. Инженерно-геологические изыскания на полосе варьирования трассы
- •6.4. Инженерно-геологические изыскания по принятому варианту трассы
- •6.5. Разведка местных дорожно-строительных материалов
- •6.6. Лабораторные испытания и полевые методы исследования физико-механических свойств грунтов и материалов
- •6.8. Камеральная обработка и представляемые материалы
- •7.1. Состав инженерно-гидрометеорологического обоснования проектов
- •7.3. Морфометрические работы
- •7.4. Гидрометрические работы
- •7.5. Аэрогидрометрические работы
- •РАЗДЕЛ ВТОРОЙ. ОСНОВНЫЕ ПРОЕКТНЫЕ РАБОТЫ
- •ГЛАВА 8. ОБОСНОВАНИЕ ТРЕБОВАНИЙ К ГЕОМЕТРИЧЕСКИМ ЭЛЕМЕНТАМ АВТОМОБИЛЬНЫХ ДОРОГ
- •8.1. Элементы плана автомобильных дорог
- •8.2. Элементы поперечных профилей
- •8.3. Элементы продольного профиля
- •8.4 Ширина проезжей части и земляного полотна
- •8.5. Остановочные, краевые полосы и бордюры
- •8.6. Поперечные уклоны элементов дороги
- •8.7. Нормы проектирования плана и продольного профиля
- •8.8. Переходные кривые
- •8.9. Виражи
- •8.10. Уширение проезжей части
- •8.11. Серпантины
- •8.12. Мосты и трубы
- •8.13. Тоннели
- •ГЛАВА 9. ПЛАН АВТОМОБИЛЬНЫХ ДОРОГ. ПРИНЦИПЫ ЛАНДШАФТНОГО ПРОЕКТИРОВАНИЯ
- •9.1. Выбор направления трассы
- •9.2. Элементы клотоидной трассы
- •9.3. Принципы трассирования
- •9.4. Цели и задачи ландшафтного проектирования*
- •9.5. Согласование элементов трассы с ландшафтом
- •9.6. Особенности трассирования автомобильных дорог в характерных ландшафтах
- •9.7. Согласование земляного полотна с ландшафтом
- •9.8. Правила обеспечения зрительной плавности и ясности трассы
- •ГЛАВА 10. ПРОЕКТИРОВАНИЕ ПРОДОЛЬНОГО ПРОФИЛЯ АВТОМОБИЛЬНЫХ ДОРОГ
- •10.1. Принципы проектирования продольного профиля
- •10.2. Критерии оптимальности
- •10.3. Комплекс технических ограничений
- •10.4. Техника проектирования продольного профиля в традиционном классе функций
- •ГЛАВА 11. ПРОЕКТИРОВАНИЕ ЗЕМЛЯНОГО ПОЛОТНА
- •11.1. Элементы земляного полотна и общие требования к нему
- •11.2. Грунты для сооружения земляного полотна
- •11.3. Природные условия, учитываемые при проектировании земляного полотна
- •11.4. Учет водно-теплового режима при проектировании верхней части земляного полотна
- •11.5. Поперечные профили земляного полотна в обычных условиях
- •11.6. Проектирование насыпей на слабых основаниях
- •11.7. Проверка устойчивости откосов при проектировании высоких насыпей и глубоких выемок
- •11.8. Земляное полотно на склонах
- •ГЛАВА 12. ПРОЕКТИРОВАНИЕ НЕЖЕСТКИХ ДОРОЖНЫХ ОДЕЖД
- •12.1. Общие сведения
- •12.2. Основы конструирования нежестких дорожных одежд
- •12.3. Расчеты нежестких дорожных одежд на прочность
- •12.4. Расчет конструкции дорожной одежды в целом по допускаемому упругому прогибу
- •12.5. Расчет по условию сдвигоустойчивости подстилающего грунта и малосвязных конструктивных слоев
- •12.6. Расчет конструкции дорожной одежды на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе
- •12.7. Обеспечение морозоустойчивости дорожной одежды
- •12.8. Осушение дорожной одежды и земляного полотна
- •ГЛАВА 13. КОНСТРУКЦИИ И ОСНОВНЫЕ ПОЛОЖЕНИЯ РАСЧЕТА ЖЕСТКИХ ДОРОЖНЫХ ОДЕЖД
- •13.1. Область применения. Основные виды покрытий
- •13.2. Общие требования к жестким дорожным одеждам. Основные принципы конструирования
- •13.3. Особенности конструкций жестких дорожных одежд
- •13.4. Основные положения расчета жестких дорожных одежд
- •Список литературы к главе 13
- •ГЛАВА 14. ОСОБЕННОСТИ РАСЧЕТА ЖЕСТКИХ ДОРОЖНЫХ ОДЕЖД
- •14.1. Напряжения в цементобетонном покрытии от внешней нагрузки
- •14.2. Определение разрушающей нагрузки для плит цементобетонного покрытия
- •14.3. Определение напряжений в цементобетонном покрытии по прогибам, измеренным в натуре
- •14.4. Определение эквивалентного модуля упругости и коэффициента поперечной деформации многослойного основания под жестким дорожным покрытием
- •14.5. Температурные напряжения
- •14.6. Устойчивость плит бетонных дорожных покрытий при повышении температуры
- •14.7. Прочность при усилении жестких покрытий слоем асфальтобетона или цементобетона
- •14.8. Устойчивость против выпирания асфальтобетонного слоя на цементобетонном основании
- •14.9. Устойчивость положения плиты со свободными краями при нагрузке от транспортных средств
- •Список литературы к главе 14
- •ГЛАВА 15. ПРОЕКТИРОВАНИЕ СИСТЕМЫ ПОВЕРХНОСТНОГО И ПОДЗЕМНОГО ДОРОЖНОГО ВОДООТВОДА
- •15.1. Система поверхностного и подземного дорожного водоотвода
- •15.2. Нормы допускаемых скоростей течения воды
- •15.3. Определение объемов и расходов ливневых и талых вод с малых водосборов
- •15.4. Гидравлический расчет дорожных канав
- •15.5. Гидравлический расчет отверстий малых мостов и труб
- •15.6. Косогорные сооружения поверхностного водоотвода
- •15.7. Укрепление русел за сооружениями
- •15.8. Расчет дренажа
- •15.9. Некоторые рекомендации к разработке региональных норм стока
- •ГЛАВА 16. ПРОЕКТИРОВАНИЕ МОСТОВЫХ ПЕРЕХОДОВ
- •16.1. Основные сведения о проектировании переходов через большие водотоки
- •16.2. Гидрологические расчеты
- •16.3. Морфометрические расчеты
- •16.4. Прогноз природных деформаций русел рек
- •16.5. Расчет срезок пойменных берегов подмостовых русел и отверстий мостов
- •16.6. Расчет общего размыва
- •16.7. Определение максимальной глубины расчетного общего размыва
- •16.8. Расчет местного размыва у опор мостов
- •16.9. Расчет размывов переходов коммуникаций у мостовых переходов
- •16.10. Расчет характерных подпоров на мостовых переходах
- •ГЛАВА 17. ПРОЕКТИРОВАНИЕ ПОДХОДОВ, РЕГУЛЯЦИОННЫХ И УКРЕПИТЕЛЬНЫХ СООРУЖЕНИЙ
- •17.1. Условия работы пойменных насыпей
- •17.2. Проектирование подходов к мостам
- •17.3. Проектирование оптимальных пойменных насыпей
- •17.4. Расчет устойчивости откосов подтопляемых насыпей
- •17.5. Расчет осадок пойменных насыпей
- •17.6. Расчет скорости осадки насыпей на слабых основаниях
- •17.7. Задачи и принципы регулирования рек у мостовых переходов
- •17.8. Конструкции регуляционных сооружений на мостовых переходах
- •ГЛАВА 18. ПЕРЕСЕЧЕНИЯ И ПРИМЫКАНИЯ АВТОМОБИЛЬНЫХ ДОРОГ
- •18.1. Общие положения и требования по проектированию пересечений и примыканий в одном уровне
- •18.2. Классификация пересечений автомобильных дорог в разных уровнях и требования к ним
- •18.3. Элементы пересечений автомобильных дорог в разных уровнях
- •18.4. Задачи, решаемые при проектировании развязок движения в разных уровнях
- •18.5. Анализ условий пересечений при проектировании развязок
- •18.6. Пропускная способность развязок в разных уровнях и оценка безопасности движения
- •18.7. Технико-экономическое сравнение вариантов развязок движения
- •ГЛАВА 19. ОСОБЕННОСТИ ИЗЫСКАНИЙ И ПРОЕКТИРОВАНИЯ ДОРОГ НА МНОГОЛЕТНЕМЕРЗЛЫХ (ВЕЧНОМЕРЗЛЫХ) ГРУНТАХ
- •19.1. Распространение вечной мерзлоты на территории Российской Федерации
- •19.2. Дорожно-климатическое районирование первой зоны - зоны вечной мерзлоты России
- •19.3. Принципы проектирования и строительства дорог на многолетнемерзлых грунтах
- •19.4. Особенности водно-теплового режима естественных грунтов и земляного полотна автомобильных дорог в районах вечной мерзлоты
- •19.5. Особенности расчета дорожных конструкций нежесткого типа в условиях вечной мерзлоты
- •19.6. Особенности изысканий для строительства дорог на многолетнемерзлых грунтах
- •19.7. Особенности проектирования дорог на многолетнемерзлых грунтах
- •19.8. Земляное полотно автомобильных дорог на многолетнемерзлых грунтах
- •19.9. Требования к грунтам земляного полотна на многолетнемерзлых грунтах
- •19.10. Конструкции земляного полотна автомобильных дорог на многолетнемерзлых грунтах
- •19.11. Водоотводные сооружения
- •19.12. Проектирование земляного полотна и искусственных сооружений на наледных участках
- •ГЛАВА 20. ИНЖЕНЕРНОЕ ОБУСТРОЙСТВО АВТОМОБИЛЬНЫХ ДОРОГ
- •20.1. Обслуживание дорожного движения
- •20.2. Дорожные знаки
- •20.3. Дорожная разметка
- •20.4. Направляющие устройства
- •20.5. Дорожные ограждения
- •20.6. Освещение автомобильных дорог
- •20.7. Составление схемы обстановки дороги
- •ГЛАВА 21. ПРОЕКТИРОВАНИЕ РЕКОНСТРУКЦИИ АВТОМОБИЛЬНЫХ ДОРОГ
- •21.1. Особенности реконструкции автомобильных дорог
- •21.2. Особенности изысканий для разработки проектов реконструкции автомобильных дорог
- •21.3. Реконструкция автомобильных дорог в плане и продольном профиле
- •21.4. Земляное полотно при реконструкции автомобильных дорог
- •21.5. Дорожные одежды при реконструкции автомобильных дорог
- •21.6. Особенности организации работ при реконструкции автомобильных дорог
- •ГЛАВА 22. ПРОЕКТИРОВАНИЕ ОРГАНИЗАЦИИ СТРОИТЕЛЬСТВА
- •22.1. Цели и задачи проекта организации строительства
- •22.2. Строительный генеральный план
- •22.3. Календарный план строительства
- •22.4. Механизация дорожного строительства
- •22.5. Машины для земляных работ
- •22.6. Машины для уплотнения грунтов и материалов дорожных одежд
- •22.7. Определение потребности в основных строительных машинах, транспортных средствах и трудовых ресурсах
- •ГЛАВА 23. ОЦЕНКА ПРОЕКТНЫХ РЕШЕНИЙ ПРИ ПРОЕКТИРОВАНИИ АВТОМОБИЛЬНЫХ ДОРОГ
- •23.1. Система показателей для оценки проектных решений
- •23.2. Определение предельной пропускной способности дороги и коэффициента загрузки движением
- •23.3. Расчет средней скорости движения транспортного потока
- •23.4. Расчет максимальной скорости движения одиночного автомобиля
- •23.5. Определение степени загрязнения придорожной полосы соединениями свинца
- •23.6. Расчет загрязнения атмосферного воздуха выбросами автомобильного транспорта
- •ГЛАВА 24. ОЦЕНКА БЕЗОПАСНОСТИ ДВИЖЕНИЯ ПРИ ПРОЕКТИРОВАНИИ ДОРОГ И ИХ РЕКОНСТРУКЦИИ
- •24.1. Влияние дорожных условий на безопасность движения
- •24.2. Оценка относительной опасности участков дороги и выявление опасных мест методом «коэффициентов относительной аварийности»
- •24.3. Выявление опасных мест метолом «коэффициентов безопасности»
- •24.4. Оценка обеспеченности безопасности движения на пересечениях в одном уровне
- •24.5. Оценка безопасности движения на пересечениях в разных уровнях
- •РАЗДЕЛ ТРЕТИЙ. АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ АВТОМОБИЛЬНЫХ ДОРОГ
- •ГЛАВА 25. ПРИНЦИПИАЛЬНЫЕ ОСНОВЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ АВТОМОБИЛЬНЫХ ДОРОГ И СООРУЖЕНИЙ НА НИХ
- •25.1. Понятие о системах автоматизированного проектирования
- •25.2. Средства обеспечения систем автоматизированного проектирования
- •25.3. Функциональная структура САПР
- •25.4. Принципы оптимизации и моделирования при проектировании автомобильных дорог
- •25.5. Гис-технологии в автоматизированном проектировании
- •Список литературы к главе 25
- •ГЛАВА 26. СИСТЕМА АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ CAD «CREDO»
- •26.1. Историческая справка
- •26.2. Функциональная структура подсистемы «Линейные изыскания»
- •26.3. Функциональная структура подсистемы «Дороги»
- •ГЛАВА 27. СИСТЕМА АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ «indorcad/road»
- •27.1. Историческая справка
- •27.3. Раздел «Продольный профиль»
- •27.4. Раздел «Верх земляного полотна»
- •27.5. Раздел «Поперечный профиль»
- •27.6. Графический редактор «IndorDrawing»
- •ГЛАВА 28. АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ ПЛАНА АВТОМОБИЛЬНЫХ ДОРОГ
- •28.1. Автоматизированное проектирование плана и продольного профиля. Общий методологический подход
- •28.2. Методы «однозначно определенной оси»
- •28.3. Метод «опорных элементов»
- •28.4. Метод «сглаживания эскизной линии трассы»
- •ГЛАВА 29. АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ ПРОДОЛЬНОГО ПРОФИЛЯ АВТОМОБИЛЬНЫХ ДОРОГ
- •29.1. Метод «опорных точек»
- •29.2. Метод «проекции градиента»
- •29.3. Метод «граничных итераций»
- •29.4. Методы «свободной геометрии»
- •ГЛАВА 30. АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ ОПТИМАЛЬНЫХ НЕЖЕСТКИХ ДОРОЖНЫХ ОДЕЖД
- •30.1. Особенности автоматизированного проектирования оптимальных нежестких дорожных одежд
- •30.2. Оптимизационный метод проектирования дорожных одежд нежесткого типа
- •30.3. Технология автоматизированного проектирования оптимальных дорожных одежд
- •ГЛАВА 31. АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ СИСТЕМЫ ПОВЕРХНОСТНОГО ВОДООТВОДА АВТОМОБИЛЬНЫХ ДОРОГ
- •31.1. Математическое моделирование стока ливневых вод с малых водосборов
- •31.2. Математическое моделирование стока талых вод с малых водосборов
- •31.3. Расчет отверстий и моделирование работы малых мостов и труб
- •31.4. Проектирование оптимальных водопропускных труб
- •31.5. Проектирование оптимальной системы поверхностного водоотвода
- •ГЛАВА 32. КОМПЛЕКСНАЯ МЕТОДОЛОГИЯ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ МОСТОВЫХ ПЕРЕХОДОВ
- •32.1. Принципы автоматизированного проектирования мостовых переходов
- •32.2. Аналитическая аппроксимация и универсальный метод определения расчетных гидрометеорологических характеристик
- •32.3 Комплексная программа расчета отверстий мостов «Рома»
- •32.4. Исходная информация и результаты расчета по программе «Рома»
- •32.5. Программа расчета уширений русел на мостовых переходах «Рур»
- •32.6. Исходная информация и результаты расчета по программе «Рур»
- •ГЛАВА 33. МЕТОДЫ РАСЧЕТА СОЕДИНИТЕЛЬНЫХ РАМП
- •33.1. Существующие принципы конструктивного решения участков ответвлений и примыканий соединительных рамп
- •33.2. Переходные кривые, требования к ним и методы их расчета
- •33.3. Расчет элементов соединительных рамп
- •33.4. Проектирование продольного профиля по соединительным рампам
- •33.5. Планово-высотное решение соединительных рамп
- •ГЛАВА 34. ОЦЕНКА ПРОЕКТНЫХ РЕШЕНИЙ ПРИ АВТОМАТИЗИРОВАННОМ ПРОЕКТИРОВАНИИ АВТОМОБИЛЬНЫХ ДОРОГ
- •34.1. Программы для оценки проектных решений
- •34.2. Построение перспективных изображений автомобильных дорог
- •34.3. Перцептивные изображения автомобильных дорог
- •34.4. Оценка зрительной плавности трассы
- •34.6. Оценка проектных решений автомобильных дорог на основе математического моделирования
- •34.7. Технико-экономическое сравнение вариантов автомобильных дорог и мостовых переходов

База нормативной документации: www.complexdoc.ru
случаях и только с низовой стороны насыпи, устраивая с верховой обычный откос с капитальным плоским укреплением.
17.2. Проектирование подходов к мостам
Продольный профиль к мосту обычно может быть разделен на три характерных участка (рис. 17.2): участок I спуска с коренного берега речной долины на пойму; пойменный участок II насыпи с минимальными высотами, обеспечивающими сохранность насыпи от переливов даже в самые высокие паводки; участок III сопряжения пойменной насыпи с проездом по мосту, как правило, значительно возвышающимся над уровнем воды в реке, особенно на судоходных реках.
Рис. 17.2. План и продольный профиль мостового перехода: 1 - мост; 2 - подходы к мосту; 3 - струеотбойные траверсы; 4 - струенаправляющие дамбы; I-III - характерные участки продольного профиля
Спуск I с коренного берега речной долины на пойму проектируют в виде обычной выемки, грунт из которой часто используют для отсыпки насыпей подходов и регуляционных сооружений. Этот участок трассы подходов нередко проектируют с предельными продольными уклонами, сопрягая с пойменной насыпью вертикальными вогнутыми кривыми.
Пойменный участок II с минимальными высотами проектируют в виде горизонтальной насыпи с высотами, при которых не происходит переливов в высокие паводки. На реках с широким разливом пойменным насыпям иногда придают небольшой продольный уклон в сторону моста в соответствии с очертанием свободной поверхности с верховой стороны насыпи
865

База нормативной документации: www.complexdoc.ru
(см. рис. 16.20), которая может быть построена по формулам (16.21) - (16.24). Для отсыпки пойменных насыпей используют грунт из выемок или привозной грунт из сосредоточенных резервов или карьеров. Очень часто пойменные насыпи возводят средствами гидромеханизации. Не рекомендуется устраивать карьеры в руслах рек с верховой стороны мостов, либо иных ответственных гидротехнических сооружений, переходов коммуникаций и т.д. Нельзя отсыпать подходы из притрассовых пойменных резервов и совершенно недопустимо устраивать резервы грунта на поймах с верховой стороны насыпей подходов.
Минимальную высоту насыпей подходов определяют:
Hmin = РУВВр% + Dzн + hнаб + D, где
РУВВр% - расчетный уровень высокой воды в створе мостового перехода с ВП = Р %;
Dzн - подпор у насыпи, определяемый либо непосредственным компьютерным расчетом по программе «Рома», либо упрощенно по формуле (16.22);
hнаб - высота набега волны на откос, определяемая по формуле
(17.3);
D = 0,5 м - конструктивный запас.
На участке III сопряжение пойменной насыпи с проездом на мосту осуществляют вогнуто-выпуклыми вертикальными кривыми. Минимальные высоты проезда на мостах определяют: на судоходных реках
Hmin = РСУ + Гс + hкон;
на несудоходных реках
Hmin = РУВВр% + Dzм + hв + Гн + hкон, где
РСУ - расчетный судоходный уровень, определяемый согласно ГОСТ 26775-97 (ГОСТ 26775-97. Габариты подмостовые судоходных пролетов мостов на внутренних водных путях. - М.: Изд-во стандартов, 1996.- 8 с);
Гс - подмостовой габарит, нормируемый в зависимости от класса реки по судоходству, согласно ГОСТ 26775-97;
866

База нормативной документации: www.complexdoc.ru
РУВВр% - расчетный уровень высокой воды в створе мостового перехода;
Dzм - подмостовой подпор, определяемый компьютерным расчетом по программе «Рома» или упрощенно по формуле (16.20);
hв - высота волны, вычисляемая из формулы (17.1) или (17.2);
Гн = 0,5-1,0 м - подмостовой габарит на несудоходных реках;
hкон - высота конструкции пролетного строения, включая толщину плиты проезжей части.
С целью обеспечения водоотвода с проезжей части, выхода на коренной берег речной долины с минимальными объемами земляных работ, а также для уменьшения высоты моста на несудоходной части отверстия и высоты насыпей подходов продольный профиль автодорожных мостов обычно проектируют на вертикальных выпуклых кривых или на продольном уклоне не превышающем 30 ‰.
Ширину насыпей на подходах назначают с учетом категории дороги, а крутизну откосов - в зависимости от грунтов насыпи, ее высоты и ожидаемых условий работы, при этом откосы, периодически подтопляемые водой, проектируют не круче 1:2.
Неподтопляемый и подтопляемый откосы сопрягают бермой шириной не менее 3 м, устраиваемой на отметках низкой пойменной насыпи (рис. 17.3, а), с целью повышения устойчивости откосов и обеспечения проезда автотранспорта на струенаправляющие дамбы для обеспечения ремонтновосстановительных работ строительными материалами.
Рис. 17.3. Характерные поперечные профили насыпей подходов: а - подтопляемый участок высокой пойменной насыпи; б - подтопляемый участок низкой пойменной насыпи; в - насыпь на пересечении староречий
867

База нормативной документации: www.complexdoc.ru
Подтопляемые насыпи проектируют с крутизной откосов не более 1:2 с уположением на 0,25 на каждые последующие 6 м высоты (рис. 17.3, б).
При пересечении староречий устраивают бермы (обычно из камня) на уровне берегов староречий (рис. 17.3, в). Берма шириной не менее 3 м обеспечивает плавное протекание воды вдоль откоса, а также обеспечивает устойчивость насыпи.
17.3. Проектирование оптимальных пойменных насыпей
Экспериментальные исследования, а также результаты компьютерного математического моделирования, выполненные И.А. Ярославцевым, показали, что коэффициент местной устойчивости на волновые воздействия возрастает при замене грунта насыпи на более крупный, возрастает с увеличением толщины плиты dпл, толщины подготовки dпл и с уположением откоса (увеличением коэффициента заложения т).
Таким образом, местная устойчивость откоса при заданном типе грунта насыпи может быть обеспечена увеличением толщины плиты, увеличением толщины щебеночной подготовки и уположением откоса. Каждое из этих мероприятий в разной степени влияет на изменение объемов работ и, следовательно, стоимости строительства подходов. Учитывая это обстоятельство, а также то, что подходы к мостам являются чрезвычайно капиталоемкими сооружениями, представляется целесообразным отыскивать при проектировании пойменных насыпей мостовых переходов такие решения, при которых была бы обеспечена с одной стороны местная устойчивость откосов при волнобое, а с другой минимальная стоимость строительства. Таким образом, проектирование подходов к мостам представляет собой классическую задачу математической оптимизации при наличии определенного комплекса технических ограничений.
Учитывая, что параметры расчетного волнения с верховой и низовой сторон насыпи в общем случае бывают различными, оптимизировать верховую и низовую части поперечного профиля нужно отдельно. В качестве функции цели целесообразно принимать строительную стоимость 1 п.м. пойменной насыпи С. При этом, для верховой или низовой частей поперечного профиля целевая функция будет иметь вид (рис. 17.4):
868

База нормативной документации: www.complexdoc.ru
где
(17.5)
W - площадь верховой или низовой части поперечного профиля пойменной насыпи, м3/м;
Сгр - стоимость разработки 1 м3 грунта насыпи, руб/м3/м;
ymin = hпб + Dzн + hнaб + 0,5 м - рабочая отметка пойменной насыпи, м;
Рис. 17.4. Схема к обоснованию целевой функции при проектировании оптимальных пойменных насыпей
hпб - бытовая глубина на пойме, м; Dzн - подпор у насыпи, м;
hнaб - высота набега расчетной волны на откос, м; m - коэффициент заложения откоса;
dщ - толщина подготовки под плитой, м;
Сщ - стоимость 1 м2 подготовки, отнесенная к единице толщины, руб/м3/м;
dпл - толщина плиты, м;
Спл - стоимость 1 м2 плиты, отнесенная к единице толщины, руб/ м3/м;
869

База нормативной документации: www.complexdoc.ru
В - ширина земляного полотна, м;
Соз - стоимость отвода 1 м2 земли, руб/м2.
Экстремум (минимум) целевой функции (17.5) отыскивают в рамках следующих технических ограничений:
ограничение по условию обеспечения местной устойчивости откоса пойменной насыпи и плитной конструкции при заданных параметрах волнения (К ³ Kmin); ограничение наибольшей крутизны откоса (т ³ 2);
ограничение наименьшей толщины подготовки (фильтра) по технологическим условиям (dщ ³ 0,10 м);
ограничение наименьшей толщины плиты по условиям транспортирования (dпл ³ 0,12 м).
Для практического решения сформулированной оптимизационной задачи реализован метод «покоординатного спуска». Последовательность поиска оптимальной конструкции пойменной насыпи сводится к следующему:
вычисляют минимальную толщину плиты dпл по формуле (17.4) при минимально допустимом коэффициенте местной устойчивости и минимально допустимых значениях dщ = 0,10 м и m = 2,0. Если в результате расчета получена толщина dпл £ 0,12 м, то приняв dпл = 0,12 м, получим оптимальное решение, поскольку при заданных технических ограничениях коэффициент устойчивости больше минимально необходимого, что соответствует минимуму строительной стоимости;
если, полученная в результате расчета толщина плиты dпл > 0,12 м, то увеличивают коэффициент заложения откоса, начиная с m = 2,0 с шагом Dmi = 0,25
где
п - число шагов перебора коэффициента заложения,
870

База нормативной документации: www.complexdoc.ru
идля каждого значения m при неизменной толщине подготовки
сиспользованием формулы (17.4) вычисляют минимальную
толщину плиты dпл, при которой обеспечена местная устойчивость откоса при заданных параметрах волнения;
для каждого значения m вычисляют целевую функцию (стоимость) по формуле (17.5). Вычисления прекращают как только строительная стоимость С, уменьшающаяся в ходе уположения откоса, вновь начинает возрастать. При этом учитывают снижение высоты насыпи ymin, связанное с уменьшением высоты набега волны на откос hнaб в результате его уположения. Минимальную стоимость погонного метра пойменной насыпи
запоминают;
при найденном значении m увеличивают толщину гравийной или щебеночной подготовки, начиная с dщ = 0,10 м с шагом Ddщ = 0,01 м
где
к - число шагов перебора толщины фильтра,
и для каждого значения толщины dщ вычисляют минимальную толщину плиты, при которой обеспечена местная устойчивость откоса;
для каждого значения толщины dщ вычисляют величину целевой функции (17.5). Вычисления прекращают как только строительная стоимость С, уменьшающаяся в ходе увеличения толщины подготовки, вновь начинает возрастать. Минимальную стоимость
при соответствующей толщине подготовки dщ запоминают;
871