
- •1. Плотность материалов: истинная, средняя, насыпная, относительная. Методики определения плотности. Зависимость свойств материалов от их плотности.
- •2. Пористость материалов. Определение пористости. Влияние пористости на свойства материалов.
- •3. Водопоглощение, гигроскопичность, влажность, водоудерживающая способность материалов и методы их определения.
- •4. Влияние влаги на свойства материалов. Водостойкость материалов. Оценка водостойкости.
- •5. Морозостойкость и водонепроницаемость, способы их определения.
- •6. Теплопроводность материалов и термическое сопротивление конструкций. Влияние различных факторов на теплопроводность материалов. Оценка теплопроводности.
- •7. Теплоемкость, огнестойкость, огнеупорность материалов. Значение этих свойств для строителя.
- •8. Прочность материалов. Выражение и определение прочности. Зависимость прочности от различных факторов.
- •9. Прочность при ударе, твердость, истираемость материалов и их определение.
- •10. Долговечность строительных материалов и ее зависимость от свойств и условий эксплуатации.
- •11. Генетическая классификация горных пород. Влияние условий образования на структуру и свойства горных пород (привести конкретные примеры).
- •12. Породообразующие минералы магматических горных пород: химический состав, свойства.
- •13. Магматические горные породы: механизмы образования, особенности строения, минеральный состав, свойства, применение в строительстве.
- •14. Породообразующие минералы осадочных горных пород: химический состав, свойства.
- •15. Осадочные горные породы: условия образования, минеральный состав, свойства, применение в строительстве.
- •16. Метаморфические горные породы: условия образования, особенности строения, минеральный состав, свойства, применение в строительстве.
- •17. Состав, макро- и микроструктура древесины.
- •18. Физико-механические свойства древесины.
- •19. Влажность древесины и ее влияние на свойства древесины.
- •20. Основы технологии производства изделий строительной керамики.
- •21. Физико-химические процессы, протекающие в сырце при его обжиге.
- •22. Классификации изделий строительной керамики по свойствам черепка и по назначению.
- •23. Структура и состав строительного стекла. Свойства строительного стекла.
- •24. Разновидности строительного стекла и их применение в строительстве.
- •25. Основы технологии производства изделий строительного стекла.
- •26. Гипсовые вяжущие вещества: сырье, производство, технические свойства, применение в строительстве.
- •27. Твердение гипсового теста
- •28. Известь строительная воздушная: сырье, производство, технические свойства, применение в строительстве. Твердение известкового теста.
- •29. Основы технологии портландцемента.
- •30. Минеральный состав портландцементного клинкера, характеристики клинкерных минералов и их влияние на свойства портландцемента.
- •31. Технические свойства портландцемента.
- •32. Твердение цементного теста. Состав и строение цементного камня.
- •34. Определение бетонов и их классификации.
- •Классификации бетонов
- •35. Свойства бетонной смеси. Зависимость свойств бетонной смеси от различных факторов. Свойства бетонной смеси
- •36. Основы технологии тяжелого бетона. Тяжелый бетон
- •37. Алгоритм подбора состава тяжелого бетона.
- •38. Прочность тяжелого бетона, факторы, влияющие на прочность.
- •39. Свойства тяжелого бетона: пористость, морозостойкость, водонепроницаемость, тепловыделение, усадка и набухание.
- •40. Легкий бетон на пористых заполнителях: состав, особенности технологии, свойства, применение в строительстве.
- •41. Ячеистые бетоны: классификация, основы технологии, свойства, применение в строительстве.
- •42. Определение битума. Химический и групповой составы, структура битумов.
- •43. Основные типы битумов, применяемых в строительстве и их технические свойства.
- •44. Рулонные кровельные и гидроизоляционные материалы на основе битумов.
- •45. Битумные мастики, их составы и сравнительная характеристика
- •46. Битумные эмульсии: состав, применение в строительстве.
- •47. Теплоизоляционные материалы, применяемые в современном строительстве и их характеристика.
- •48. Классификация и свойства теплоизоляционных материалов.
- •49. Разновидности красок, применяемых в строительстве.
- •50. Отделочные материалы и их основные компоненты. Свойства лакокрасочных материалов.
8. Прочность материалов. Выражение и определение прочности. Зависимость прочности от различных факторов.
Прочность – свойство материалов сопротивляться разрушению из-за возникающих в них внутренних напряжений.
Численной характеристикой этого свойства является предел прочности (временное сопротивление), который в строительном материаловедении обозначается R.
Предел прочности равен напряжению, вызывающему разрушение материала, поэтому для нахождения предела прочности необходимо определить напряжение, при котором материал разрушается.
Например, чтобы определить предел прочности при сжатии бетона, необходимо сначала вычислить площадь грани образца, на которую будет распределена нагрузка, а затем на испытательной машине (прессе) зафиксировать разрушающую нагрузку в кгс или ньютонах.
После этого подсчитывают напряжение, при котором разрушился образец, т.е. предел прочности при сжатии RСЖ
На результат при определении предела прочности материала влияет множество факторов. Например, предел прочности при сжатии малых образцов получается выше, чем образцов большего размера. Влияет на результат испытаний и форма образца. Например, более предпочтительна форма цилиндра по сравнению с формой кубика. С увеличением размеров образца, главным образом его высоты, влияние сил трения снижается, под нагрузкой образец разрушается от поперечного разрушения.
Предел прочности материалов – условная величина, которая зависит от множества причин. Это размеры и конфигурация образцов, их температура и влажность, скорость приложения нагрузки и т.д.
Методы определения прочностных показателей различных материалов подробно прописаны в соответствующих нормативных документах.
Коэффициент конструктивного качества (ККК) – это характеристика относительной прочности материала, т.е. предела прочности по отношению к плотности.
Чтобы плотность перевести в безразмерную величину, пользуются понятием относительная прочность (т.е. по отношению к плотности воды), МПа:
В строительстве используют различные строительные материалы, выбирая те, у которых высокая величина этого коэффициента, т.е. высокая прочность при малой плотности, например, стеклопластик (225 МПа), древесину (200 МПа), сталь (50-120 МПа), бетон (10-50 МПа), кирпич (5,5 МПа).
9. Прочность при ударе, твердость, истираемость материалов и их определение.
Твердость – свойство материала сопротивляться проникновению в него другого, более твердого тела.
Твердость пластичных материалов, в частности металлов, наиболее часто определяют путем вдавливания в образец малодеформирующихся тел, изготовленных в виде шарика, конуса или пирамиды. В этом случае твердость характеризует свойство материала сопротивляться пластической деформации на поверхности образца.
Известен ряд способов определения твердости материалов посредством вдавливания твердого наконечника, например, метод Бринелля.
По этому методу в поверхность испытуемого образца вдавливается при заданной нагрузке шарик определенного диаметра из закаленной хромистой стали.
По результатам испытаний вычисляют число твердости учитывая нагрузку на шарик, площадь поверхности отпечатка, диаметр шарика, диаметр отпечатка.
Твердость хрупких материалов, например минералов или мономинеральных пород, можно характеризовать по условной десятибальной шкале Мооса, в которой в качестве эталонов принята твердость десяти минералов, расположенных по возрастающей твердости:
1 – тальк - 10 – алмаз.
Испытуемый материал имеет число твердости между эталонными минералами шкалы Мооса, из которых один чертит данный материал, а другой сам чертится испытуемым материалом.
Чем выше твердость материалов, тем больше сопротивление истиранию.
Истираемость – способность материала истираться тонкими слоями при трении его о другой, более твердый материал.
Сопротивление материала истиранию определяют на специальных машинах (кругах истирания) и выражают потерей массы образца, отнесенной к площади истирания.
Истираемость И, г/см2 вычисляют по формуле:
где
- масса образца до и после испытания,
г; F – площадь истирания, см2.