
- •Н. Б. Левченко
- •Общие указания по выполнению расчетно-проектировочных работ
- •Используемые обозначения
- •4. Изгиб Основные понятия и формулы
- •4.1. Расчет статически определимых балок
- •Пример 1 Условие задачи
- •Пример 2 Условие задачи
- •Решение
- •4.1.2. Проверка прочности балок при плоском поперечном изгибе (задачи № 16–19)
- •Пример 1
- •Условие задачи
- •Решение
- •Пример 2 Условие задачи
- •Решение
- •Пример 3 Условие задачи
- •Решение
- •4.1.3. Определение перемещений и проверка жесткости балок (задачи № 19, 20)
- •Основные определения
- •Аналитический способ определения перемещений
- •Метод Максвелла – Мора определения перемещений
- •Определение перемещений в балках аналитическим способом Пример 1 Условие задачи
- •Решение
- •Пример 2 Условие задачи
- •Решение
- •Определение перемещений в балке методом Максвелла – Мора Пример 1 Условие задачи
- •Решение
- •Пример 2 Условие задачи
- •Решение
- •4.2. Расчет статически определимых рам
- •Основные определения
- •Примеры решения задач
- •4.2.2. Определение перемещений в рамах (задачи № 21, 22) Условие задачи
- •Решение
- •4.3. Расчет статически неопределимых балок и рам
- •Основные определения
- •Примеры решения задач
- •4.4. Расчет плоского трубопровода на температурное воздействие и внутреннее давление
- •Основные определения
- •Пример расчета трубопровода (задача № 26) Условие задачи
- •Решение
- •4.5. Определение напряжений и деформаций в криволинейном стержне
- •Основные определения
- •Пример расчета криволинейного стержня (задача № 27)
- •Сопротивление материалов
- •Часть 2
Пример 1 Условие задачи
Рис. 4.6. К решению примера 1 по построению
эпюр Q
иМ:
а– схема балки с нагрузками;
б – эпюры поперечной силы и
изгибающего момента
Решение
Прежде всего найдем опорные реакции. Балка имеет жесткое защемление на правом конце4 и в этом закреплении при заданной вертикальной нагрузке возникают две опорные реакции: вертикальная реакция RA и реактивный момент MA. Горизонтальная реакция при действии вертикальной нагрузки равна нулю. Это следует из уравнения равновесия "сумма проекций всех сил на горизонтальную ось равна нулю". Определим RA и MA, используя два других уравнения статики. Желательно составлять такие уравнения, в каждое из которых входит только одна неизвестная. В данном случае такими уравнениями являются "сумма проекций всех сил на вертикальную ось (ось z) равна нулю" и "сумма моментов всех сил относительно точки А равна нулю":
;
;
;
Из
первого уравнения найдемRA
=
30 кН, из второго – МА
=5
кН×м.
Полученные положительные знаки опорных
реакций подтверждают выбранные нами
направления опорных реакций: RA
– вверх, а МА
– против часовой стрелки. Для проверки
рекомендуем использовать любое другое
уравнение равновесия, например
:
– 30×2 – 15×2×1 – 60 + 10×1×2,5 + 30×4+5 = – 150 + 150 = 0.
Теперь определяем внутренние усилия: поперечную силу Q и изгибающий момент М. В соответствии с методом сечений рассекаем балку на каждом участке (в данной задаче их три) произвольным сечением и рассматриваем все силы, расположенные с одной стороны от сечения: слева или справа. Удобно рассматривать все силы с той стороны от сечения, где сил меньше. Начало отсчета координаты x на каждом участке можно выбирать произвольным образом. Например, на рис. 4.6, а начало отсчета x на каждом участке – свое и находится в начале участка. Запишем выражения для Q и М на каждом участке.
Участок
1:
.
Рассмотрим силы, расположенные слева от сечения. По определению поперечной силы и с учетом правила знаков для Q (см. рис. 4.5, а):
.
Здесь
– равнодействующая равномерно
распределенной нагрузки, действующей
слева от сечения.
По определению изгибающего момента и с учетом правила знаков для М (см. рис. 4.5, б):
,
где во втором
слагаемом
– плечо равнодействующей равномерно
распределенной нагрузки (
),
взятой слева от сечения (равнодействующая
приложена по середине длины отсеченной
части балкиx1).
Для построения эпюр найдем значения Q и М на границах участка:
в начале участка
(х1
= 0)
,
а
;
в конце участка
()
;
.
Участок
2:
.
Снова рассмотрим все силы, расположенные слева от сечения.
;
.
Граничные значения Q и М:
в начале участка
()
;
,
в конце участка
()
;
.
Участок
3:
.
Теперь рациональнее рассмотреть все силы справа от сечения. Тогда
;
.
Из этих выражений следует, что поперечная сила на третьем участке – постоянная величина, а изгибающий момент меняется по линейному закону и на границах участка имеет следующие значения:
в начале участка
()
,
в конце участка
()
.
Запишем результаты определения внутренних усилий в таблицу, сосчитав численные значения Q и М на границах участков (табл. 1).
Таблица 1
х0
= 1,33 м.
Чтобы найти максимальное значение изгибающего момента, подставим х0 в выражение для М на первом участке:
кН×м.
По результатам вычислений в таблице строим эпюры Q и М на каждом участке (см. рис. 4.6, б). Не забываем после построения эпюр проанализировать результаты по тем правилам проверки правильности построения эпюр, которые перечислены ранее.