
- •Архитектура вычислительных систем. Вычислительные машины, системы и сети
- •1. Основные понятия вычислительной техники и принципы организации вычислительных систем
- •1.1. Основные понятия и определения
- •1.2. Принципы организации вычислительных машин и систем
- •1.3. Основные характеристики вычислительных машин и систем
- •1.4. Многоуровневая организация вычислительных процессов
- •Вопросы для самопроверки
- •2. Простейшие типовые элементы вычислительных машин
- •2.1. Комбинационные схемы
- •1. Конъюнкция (логическое умножение) .
- •2. Дизъюнкция (логическое сложение) .
- •3. Отрицание (инверсия) .
- •4. Конъюнкция и инверсия (Штрих Шеффера) .
- •5. Дизъюнкция и инверсия (Стрелка Пирса) .
- •6. Эквивалентность .
- •7. Отрицание эквивалентности .
- •2.2. Автоматы с памятью
- •2.3. Триггеры
- •2.4. Проблемы и перспективы развития элементной базы вычислительных машин
- •Вопросы для самопроверки
- •3. Функциональные узлы комбинационного и последовательного типов
- •3.1. Функциональные узлы последовательного типа
- •3.1.1. Регистры
- •3.1.2. Счётчики
- •3.1. Функциональные узлы комбинационного типа
- •3.2.1 Шифраторы и дешифраторы
- •3.2.2 Компараторы
- •3.2.3 Сумматоры
- •Вопросы для самопроверки
- •4. Функциональная организация процессора
- •4.1. Основные характеристики и классификация процессоров
- •4.2. Физическая и функциональная структура процессора
- •4.2.1 Операционное устройство процессора
- •4.2.2 Шинный интерфейс процессора
- •4.3. Архитектурные принципы организации risc-процессоров
- •4.4. Производительность процессоров и архитектурные способы её повышения
- •Вопросы для самопроверки
- •5. Организация работы процессора
- •5.1 Классификация и структура команд процессора
- •5.2. Способы адресации данных и команд
- •5.2.1 Способы адресации данных
- •5.2.2 Способы адресации команд
- •5.3. Поток управления и механизм прерываний
- •Вопросы для самопроверки
- •6 Современное состояние и тенденции развития процессоров
- •6.1. Архитектурные особенности процессоров Pentium
- •6.2. Программная модель процессоров Pentium
- •6.2.1. Прикладная программная модель процессоров Pentium
- •6.2.2. Системная программная модель процессоров Pentium
- •6.2.3. Система команд и режимы адресации процессоров
- •6.3. Аппаратная организация защиты в процессорах Pentium
- •6.4. Аппаратные средства поддержки многозадачности
- •6.5. Перспективы развития процессоров
- •Вопросы для самопроверки
- •7. Память. Организация памяти
- •7.1. Иерархическая организация памяти
- •7.2. Классификация запоминающих устройств
- •7.3. Структура основной памяти
- •7.4. Память с последовательным доступом
- •7.5. Ассоциативная память
- •7.6. Организация флэш-памяти
- •7.7. Архитектурные способы повышения скорости обмена между процессором и памятью
- •Вопросы для самопроверки
- •8. Управление памятью. Виртуальная память
- •8.1. Динамическое распределение памяти
- •8.2. Сегментная организация памяти
- •8.3. Страничная организация памяти
- •8.4. Сегментно-страничная организация памяти
- •Вопросы для самопроверки
- •9. Организация ввода-вывода информации. Системная шина
- •9.1. Организация шин. Системная шина
- •9.1.1. Структура системной шины
- •9.1.2. Протокол шины
- •9.1.3. Иерархия шин
- •9.2 Организация взаимодействия между периферийными устройствами и процессором и памятью вычислительных машин
- •9.3. Внешние интерфейсы вычислительных машин
- •9.3.1. Параллельный порт lpt и интерфейс Centronics
- •9.3.1. Последовательный порт com и интерфейс rs-232c
- •9.3.3. Универсальная последовательная шина usb
- •9.3.4. Беспроводные интерфейсы
- •Вопросы для самопроверки
- •Модуль 2. Вычислительные системы
- •10. Вычислительные системы параллельной обработки. Многопроцессорные и многоядерные системы
- •10.1. Параллельная обработка информации
- •10.2. Классификация систем параллельной обработки данных
- •10.2.1 Классификация Флинна
- •10.2.2. Классификация Головкина
- •10.2.3. Классификация многопроцессорных систем по
- •10.3. Вычислительные системы на кристалле. Многоядерные системы
- •10.4. Тенденции развития вс
- •Вопросы для самопроверки
- •11. Организация микроконтроллеров и микроконтроллерных систем
- •11.1. Общие сведения о системах управления
- •11.2. Организация микроконтроллеров и микроконтроллерных систем
- •11.3. Области применения и тенденции развития мк
- •Вопросы для самопроверки
- •Модуль 3. Телекоммуникационные сети
- •12. Организация компьютерных сетей
- •12.1. Обобщённая структура компьютерных сетей
- •12.2. Классификация компьютерных сетей
- •Вопросы для самопроверки
- •13. Стандартизация компьютерных сетей. Эталонная модель взаимодействия открытых систем
- •13.1. Понятие «открытой системы». Взаимодействие открытых систем
- •13.2. Эталонная модель взаимодействия открытых систем
- •13.3. Структура блоков информации
- •7. Прикладной6. Представительный5. Сеансовый4. Транспортный3. Сетевой2. Канальный1. Физический
- •Вопросы для самопроверки
- •Литература
- •Архитектура вычислительных систем. Вычислительные машины, системы и сети
3. Отрицание (инверсия) .
Эта функция реализуется логическим элементом «НЕ» – инвертором, который изменяет входной сигнал на противоположный.
Условное обозначение логического элемента «НЕ» представлено на рис. 8, а закон функционирования отражает табл. 2.3.
Рис. 8. Логический элемент «НЕ» | ||||||
Таблица 2.3. Таблица истинности «НЕ»
|
4. Конъюнкция и инверсия (Штрих Шеффера) .
Эта операция реализуется логическим элементом «И-НЕ» – вентилем, на выходе которого формируется уровень логического 0 тогда и только тогда, когда на все его входы будет подан уровень логической 1. Функция названа по фамилии американского логика Генри Мориса Шеффера (Henry M. Sheffer, 1882 – 1964).
Условное обозначение логического элемента «И-НЕ» представлено на рис. 9, а закон функционирования отражает табл. 2.4.
Рис. 9. Логический элемент «И-НЕ» | |||||||||||||||
Таблица 2.4. Таблица истинности «И-НЕ»
|
5. Дизъюнкция и инверсия (Стрелка Пирса) .
Эта функция реализуется логическим элементом «ИЛИ-НЕ» – вентилем, на выходе которого формируется уровень логической 1 тогда и только тогда, когда на все его входы будет подан уровень логического 0. Название этой операции дано по фамилии американского математика Чарлза Сандерса Пирса (Charles S. Peirce, 1839 – 1914).
Условное обозначение логического элемента «ИЛИ-НЕ» представлено на рис. 10, а закон функционирования отражает табл. 2.5.
Рис. 10. Логический элемент «ИЛИ-НЕ» | |||||||||||||||
Таблица 2.5. Таблица истинности «ИЛИ-НЕ»
|
6. Эквивалентность .
Эта функция реализуется логическим элементом «Исключающее ИЛИ-НЕ» – вентилем, на выходе которого формируется уровень логического 0 тогда и только тогда, когда на его входы подаются одинаковые сигналы (оба 0 или обе 1).
Условное обозначение логического элемента «Исключающее ИЛИ-НЕ» представлено на рис. 11, а закон функционирования отражает табл. 2.6.
Рис. 11. Логический элемент «Исключающее ИЛИ-НЕ» | |||||||||||||||
Таблица 2.6. Таблица истинности «Исключающее ИЛИ-НЕ»
|
7. Отрицание эквивалентности .
Эта функция реализуется логическим элементом «Исключающее ИЛИ» – вентилем, на выходе которого формируется уровень логической 1 тогда и только тогда, когда на один вход подаётся уровень логической 1, а на другой – уровень логического 0.
Условное обозначение логического элемента «Исключающее ИЛИ» представлено на рис. 12, а закон функционирования отражает табл. 2.7.
Рис. 12. Логический элемент «Исключающее ИЛИ» | |||||||||||||||
Таблица 2.7. Таблица истинности «Исключающее ИЛИ»
|
На основе перечисленных выше логических элементов строятся комбинационные схемы, которые, в свою очередь, служат базой для построения таких функциональных узлов, как шифраторы и дешифраторы, компараторы, сумматоры и другие. В них результат обработки зависит только от комбинации входных сигналов и вырабатывается сразу после их подачи.
Некоторые функциональные узлы комбинационного типа будут рассмотрены ниже.