
- •Биохимия микроорганизмов.
- •1. Превращения органических веществ, не содержащих азот.
- •2. Превращения органических азотосодержащих соединений.
- •3. Превращения минеральных азотосодержащих веществ.
- •4. Превращения соединений серы, фосфора и железа.
- •Генетика микроорганизмов.
- •Принципы микробиологического контроля.
- •Патогенные микроорганизмы в пищевой промышленности.
4. Превращения соединений серы, фосфора и железа.
Превращения соединений серы.При разложении серосодержащих белков и аминокислот происходит дальнейшее восстановление неорганических соединений серы, которые в определенных условиях под действием ферментов микроорганизмов могут восстанавливаться до сероводорода, а восстановленные соединения серы могут подвергаться окислению. Среди активных окислителей, восстановленных неорганическими соединениями серы, можно выделить 4 группы микроорганизмов:
тионовые;
нитчатые формы;
фотосинтезирующие зеленые и пурпурные серные бактерии;
хемоорганотрофные организмы – представители родов Pseudomonas,Bacillaceae,PenicilliumиAspergillus;
Серобактерии широко распространены в природе, они окисляют сероводород в 2 фазы. На 1-й фазе происходит окисление сероводорода до свободной серы, которая откладывается в протоплазме клеток в виде полужидких капель. В отсутствие водорода наступает 2-я фаза – окисление серы в серную кислоту. То есть сера в клетках серобактерий является запасным энергетическим материалом, а окислительный процесс играет роль дыхательного процесса.
Превращения соединений фосфора. Эти превращения сводятся к минерализации органического фосфора и к переводу фосфорнокислых солей из менее растворимых в более растворимые формы. Минерализацию вызывают гнилостные бактерии.
Превращения соединений железа.В природе распространено окисление закисных солей железа в окисные. Этот процесс осуществляется особой группой железобактерий, которые поглощают из окружающей среды растворенные в воде закисные соли (Fe2+) и превращают их вFe(OH)3. Этот процесс чаще всего осуществляют нитчатые бактерии.
ЛЕКЦИЯ № 6.
Генетика микроорганизмов.
1. Наследственные факторы микроорганизмов.
2. Механизмы, вызывающие изменения генетической информации.
1. Наследственные факторы микроорганизмов. В клетках эукариот местом нахождения генетического материала являются ядра, а у прокариот – нуклеоиды. Генетический материал представлен ДНК. Бактериальные клетки ДНК имеют форму нитей, замкнутых в виде кольца, - бактериальная хромосома. Хромосома имеет отдельные участки (фрагменты молекулы ДНК), которые называются генами. Ген – основной фактор, отвечающий за наследственные свойства микроорганизмов. Кроме того, конкретные признаки микроорганизмов обуславливают отдельные ферменты. Гены, которые несут информацию о синтезируемых микроорганизмами ферментах – структурные гены.
Микроорганизмы содержат генетический материал не только в хромосоме, но и в плазмидах, расположенных в цитоплазме. Плазмиды представляют собой молекулы ДНК. Клетка микроорганизма составляет генотип данного микроорганизма. Проявление наследуемых морфологических признаков и физиологических процессов называется фенотипом.
Изменения наследственных признаков, возникающие под влиянием внешней среды, - модификации. Модификации существуют до тех пор, пока действует вызывающий их фактор среды, и не наследуются организмами. Изменения генотипа называются мутациями, они происходят случайно и являются наследственно закрепленными признаками.
2. Механизмы, вызывающие изменения генетической информации. Мутации происходят, если в ДНК химически изменяется или выпадает нуклеотид или в ДНК включается лишний нуклеотид. Различают генные и хромосомные мутации. Генные мутации затрагивают только 1 ген, а хромосомные распространяются на несколько генов.
Генные мутации:
точковые мутации – мутации, при которых происходят химическое изменение одного нуклеотида. Среди них различают несколько групп:
транзиции – мутации, когда пурин одной из цепей ДНК замещается другим пурином, а пиримидин комплиментарной цепи другим пиримидином.
трансверсии – мутации, когда происходит замена пурина пиримидином.
мутации со сдвигом рамки – изменения, когда происходит вставка лишнего нуклеотида.
В ряде случаев точковые мутации могут возвращаться к исходной дикой форме в результате процесса обратной мутации – реверсии.
Хромосомные мутации связаны с более крупными перестройками фрагментов ДНК. Среди них выделяются:
делеция, которая проявляется в результате выпадения меньшего или большего числа нуклеотидов;
инверсия, которая проявляется в виде поворота участка ДНК на 180о;
дупликация – повторение какого-либо фрагмента ДНК;
Мутации вызывают обычно химические и физические агенты, такие как рентгеновское, ультрафиолетовое излучения, гамма-лучи, соединения тяжелых металлов, перекиси, минеральные масла, алкилирующие соединения, аналоги иприта и другие. Клетки бактерий обладают специальными системами, восстанавливающими поврежденные ДНК. Восстановления осуществляются ферментами, которые находятся под контролем специальных генов.
У микроорганизмов имеются механизмы, способствующие возникновению в потомстве резко измененнной наследственности. Эти механизмы заключаются в немедленной перестановке генов (рекомбинации), принадлежащих близкородственным, но генетически различным организмам. У эукариот это образование индивидуумов происходит в результате полового процесса. У прокариот известно 3 процесса рекомбинации генов:
трансформация – перенос генов, при котором часть ДНК клетки-донора может проникать в родственную бактериальную клетку. ДНК получается экстрагированием или при естественном растворении клеток.
коньюгация – процесс, при котором сблизившиеся родительские клетки соединяются при помощи коньюгационных мостиков, через которые происходит обмен генетическим материалом.
трансдукция – перенос бактериального материала от одной клетки к другой при участии бактериофага.
ЛЕКЦИЯ №7.