
- •1) Основные понятия и величины, характеризующие электрические цепи
- •2) Классификация электрических цепей и их элементов. Виды схем, используемых в электротехнике
- •3) Основные законы электротехники
- •4) Типы задач, решаемых при расчёте электрооборудования. Дуальность элементов
- •5) Метод эквивалентных преобразований
- •6) Метод пропорциональных (определяющих) величин
- •7) Метод составления полной системы уравнений Кирхгофа
- •8) Метод контурных токов
- •10) Метод узловых напряжений (потенциалов)
- •11) Представление схем в виде графов. Топологические понятия
- •12,13) Виды матриц, используемых для описания схем в виде графа. Порядок составления топологических матриц
- •14) Матричная запись метода контурных токов
- •15) Матричная запись метода узловых напряжений
- •16) Теорема наложения и метод расчёта, основанный на ней
- •17) Теорема об эквивалентном генераторе и метод расчёта, основанный на ней
- •18) Теорема взаимности и метод расчёта, основанный на ней
- •19) Гармонические колебания , их описание и характеристики
- •20) Векторная форма представления синусоидальных величин
- •21) Представление синусоидальных величин в комплексной плоскости
- •22) Последовательная r-l-c цепь. Основные соотношения, полное комплексное сопротивление
- •23) Мощность цепи синусоидального тока
- •1. Резистор (идеальное активное сопротивление).
- •2. Катушка индуктивности (идеальная индуктивность)
- •3. Конденсатор (идеальная емкость)
- •24) Резонансные характеристики r-l-c цепи при последовательном соединении элементов
- •2. В цепи преобладает емкость, т.Е. , а значит,. Этот случай отражает векторная диаграмма на рис. 2,б.
- •25) Параллельная r-l-c цепь. Основные соотношения. Полная комплексная проводимость
- •27) Резонансные характеристики параллельной r-l-c цепи
- •28) Особенности анализа цепей со взаимоиндуктивными связями
- •Воздушный (линейный) трансформатор
- •29) Анализ цепей при несинусоидальном периодическом токе. Три формы разложения периодических сигналов в ряд Фурье
- •30) Интегральные характеристики несинусоидальных колебаний. Равенство Парсеваля
- •31) Частотные характеристики линейных электрических цепей и их использование в электрических цепях
- •32) Анализ электрических цепей как четырёхполюсников. Шесть комплектов первичных параметров
- •33) Схемы соединения и порядок свёртки четырехполюсников
- •34) Принципы согласования нагрузки. Характеристические (вторичные) параметры четырёхполюсников и их связь с первичными параметрами
- •35) Экспериментальное определение первичных и вторичных параметров четырёхполюсников
- •37) Транзистор как четырёхполюсник
- •40) Виды нелинейных элементов цепей и способы их описания
- •41) Графический метод анализа нелинейных цепей на постоянном токе
- •42) Графический метод анализа нелинейных цепей на переменном токе
- •Графический метод с использованием характеристик для мгновенных значений
- •Решение
- •43) Аналитический метод анализа нелинейных цепей
- •44) Понятие о режимах малого и большого сигнала
- •45) Магнитные цепи
- •Характеристики ферромагнитных материалов
- •Основные законы магнитных цепей
- •46) Методы анализа магнитных цепей
- •Регулярные методы расчета
- •1. Прямая” задача для неразветвленной магнитной цепи
- •2. “Прямая” задача для разветвленной магнитной цепи
- •Графические методы расчета
- •1. “Обратная” задача для неразветвленной магнитной цепи
- •2. “Обратная” задача для разветвленной магнитной цепи
- •Итерационные методы расчета
- •47) Электромагнитные устройства постоянного тока
- •48) Магнитные цепи переменного тока и методы их анализа
- •49) Методы машинного расчёта нелинейных цепей (итерационные методы)
35) Экспериментальное определение первичных и вторичных параметров четырёхполюсников
Если схема четырехполюсника неизвестна, то его параметры можно определить экспериментальным путем, используя режимы холостого хода и короткого замыкания.
Рис. 5.9. Схема для экспериментального определения параметров четырехполюсника.
Определим А-параметры четырехполюсника.
Для этого на входе четырехполюсника подключим вольтметр (V), амперметр (А) и фазометр (φ), как показано на рис. 5.9.
Переведем четырехполюсник в режим холостого хода по выходу (I2=0) и измерим с помощью приборов Iх.х.1, Uх.х.1 и φх.х.1.
В случае, когда I2 = 0 система А-параметров имеет вид:
(5.76)
Из (5.76) получим
.
(5.77)
Переведем четырехполюсник в режим короткого замыкания по выходу (U2 = 0). Измерим Iк.з.1, Uк.з.1 и φк.з.1, тогда система А-параметров будет иметь вид:
(5.78)
Из (5.78) получим
.
(5.79)
Подключим приборы к зажимам (2-2) и переведем четырехполюсник в режим холостого хода по входу (I1 = 0) и измерим Iх.х.2, Uх.х.2 и φх.х.2. Тогда имеем:
(5.80)
Из (5.80) получим
.
(5.81)
Четвертое уравнение получим, используя соотношение:
.
(82)
Решив систему уравнений (5.77), (5.79), (5.81) и (5.82), найдем А-параметры:
;
;
;
.
37) Транзистор как четырёхполюсник
40) Виды нелинейных элементов цепей и способы их описания
Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент.
Нелинейными называются элементы, параметры которых зависят от величины и (или) направления связанных с этими элементами переменных (напряжения, тока, магнитного потока, заряда, температуры, светового потока и др.). Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками.
Нелинейные элементы можно разделить на двух – имногополюсные. Последние содержат три (различные полупроводниковые и электронные триоды) и более (магнитные усилители, многообмоточные трансформаторы, тетроды, пентоды и др.) полюсов, с помощью которых они подсоединяются к электрической цепи. Характерной особенностью многополюсных элементов является то, что в общем случае их свойства определяются семейством характеристик, представляющих зависимости выходных характеристик от входных переменных и наоборот: входные характеристики строят для ряда фиксированных значений одного из выходных параметров, выходные – для ряда фиксированных значений одного из входных.
По другому признаку классификации нелинейные элементы можно разделить на инерционные ибезынерционные. Инерционными называются элементы, характеристики которых зависят от скорости изменения переменных. Для таких элементовстатические характеристики,определяющие зависимость между действующими значениями переменных, отличаются отдинамических характеристик,устанавливающих взаимосвязь между мгновенными значениями переменных. Безынерционными называются элементы, характеристики которых не зависят от скорости изменения переменных. Для таких элементов статические и динамические характеристики совпадают.
Понятия инерционных и безынерционных элементов относительны: элемент может рассматриваться как безынерционный в допустимом (ограниченном сверху) диапазоне частот, при выходе за пределы которого он переходит в разряд инерционных.
В зависимости от
вида характеристик различают нелинейные
элементы с симметричнымиинесимметричнымихарактеристиками.
Симметричной называется характеристика,
не зависящая от направления определяющих
ее величин, т.е. имеющая симметрию
относительно начала системы координат:.
Для несимметричной характеристики это
условие не выполняется, т.е.
.
Наличие у нелинейного элемента
симметричной характеристики позволяет
в целом ряде случаев упростить анализ
схемы, осуществляя его в пределах одного
квадранта.
По типу характеристики
можно также разделить все нелинейные
элементы на элементы с однозначнойинеоднозначной характеристиками.Однозначной называется характеристика,
у которой каждому значению х соответствует
единственное значение y и наоборот. В
случае неоднозначной характеристики
каким-то значениям х может соответствовать
два или более значения y или наоборот.
У нелинейных резисторов неоднозначность
характеристики обычно связана с наличием
падающего участка, для которого
,
а у нелинейных индуктивных и емкостных
элементов – с гистерезисом.
Наконец, все нелинейные элементы можно разделить на управляемые инеуправляемые. В отличие от неуправляемых управляемые нелинейные элементы (обычно трех- и многополюсники) содержат управляющие каналы, изменяя напряжение, ток, световой поток и др. в которых, изменяют их основные характеристики: вольт-амперную, вебер-амперную или кулон-вольтную.