
- •Архитектура вычислительных систем. Вычислительные машины, системы и сети
- •2 Простейшие типовые элементы вычислительных машин 21
- •10 Вычислительные системы параллельной обработки. 147
- •11 Организация микроконтроллеров и микроконтроллерных систем 165
- •12 Организация компьютерных сетей 174
- •13 Стандартизация компьютерных сетей. Эталонная модель взаимодействия открытых систем 182
- •1 Основные понятия вычислительной техники и принципы организации вычислительных систем
- •1.1 Основные понятия и определения
- •1.2 Принципы организации вычислительных машин и систем
- •1.3 Основные характеристики вычислительных машин и
- •1.4 Многоуровневая организация вычислительных процессов
- •Вопросы для самопроверки
- •2 Простейшие типовые элементы вычислительных машин
- •2.1 Комбинационные схемы
- •1) Конъюнкция (логическое умножение) .
- •2) Дизъюнкция (логическое сложение) .
- •3) Отрицание (инверсия) .
- •4) Конъюнкция и инверсия (Штрих Шеффера) .
- •5) Дизъюнкция и инверсия (Стрелка Пирса) .
- •6) Эквивалентность .
- •7) Отрицание эквивалентности .
- •2.2 Автоматы с памятью
- •2.3 Триггеры
- •2.4 Проблемы и перспективы развития элементной базы
- •Вопросы для самопроверки
- •3 Функциональные узлы комбинационного и
- •3.1 Функциональные узлы последовательного типа
- •3.1.1 Регистры
- •3.1.2 Счётчики
- •3.1 Функциональные узлы комбинационного типа
- •3.2.1 Шифраторы и дешифраторы
- •3.2.2 Компараторы
- •3.2.3 Сумматоры
- •Вопросы для самопроверки
- •4 Функциональная организация процессора
- •4.1 Основные характеристики и классификация процессоров
- •4.2 Физическая и функциональная структура процессора
- •4.2.1 Операционное устройство процессора
- •4.2.2 Шинный интерфейс процессора
- •4.3 Архитектурные принципы организации risc-процессоров
- •4.4 Производительность процессоров и архитектурные
- •Вопросы для самопроверки
- •5 Организация работы процессора
- •5.1 Классификация и структура команд процессора
- •5.2 Способы адресации данных и команд
- •5.2.1 Способы адресации данных
- •5.2.2 Способы адресации команд
- •5.3 Поток управления и механизм прерываний
- •Вопросы для самопроверки
- •6 Современное состояние и тенденции развития процессоров
- •6.1 Архитектурные особенности процессоров Pentium
- •6.2 Программная модель процессоров Pentium
- •6.2.1 Прикладная программная модель процессоров Pentium
- •6.2.2 Системная программная модель процессоров Pentium
- •6.2.3 Система команд и режимы адресации процессоров
- •6.3 Аппаратная организация защиты в процессорах Pentium
- •6.4 Аппаратные средства поддержки многозадачности
- •6.5 Перспективы развития процессоров
- •Вопросы для самопроверки
- •7 Память. Организация памяти.
- •7.1 Иерархическая организация памяти
- •7.2 Классификация запоминающих устройств
- •7.3 Структура основной памяти
- •7.4 Память с последовательным доступом
- •7.5 Ассоциативная память
- •7.6 Организация флэш-памяти
- •7.7 Архитектурные способы повышения скорости обмена между процессором и памятью
- •Вопросы для самопроверки
- •8 Управление памятью. Виртуальная память
- •8.1 Динамическое распределение памяти
- •8.2 Сегментная организация памяти
- •8.3 Страничная организация памяти
- •8.4 Сегментно-страничная организация памяти
- •Вопросы для самопроверки
- •9 Организация ввода-вывода информации. Системная шина
- •9.1 Организация шин. Системная шина
- •9.1.1 Структура системной шины
- •9.1.2 Протокол шины
- •9.1.3 Иерархия шин
- •9.2 Организация взаимодействия между периферийными устройствами и процессором и памятью вычислительных машин
- •9.3 Внешние интерфейсы вычислительных машин
- •9.3.1 Параллельный порт lpt и интерфейс Centronics
- •9.3.1 Последовательный порт com и интерфейс rs-232c
- •9.3.3 Универсальная последовательная шина usb
- •9.3.4 Беспроводные интерфейсы
- •Вопросы для самопроверки
- •10 Вычислительные системы параллельной обработки.
- •10.1 Параллельная обработка информации
- •10.2 Классификация систем параллельной обработки данных
- •10.2.1 Классификация Флинна
- •10.2.2 Классификация Головкина
- •10.2.3 Классификация многопроцессорных систем по
- •10.3 Вычислительные системы на кристалле. Многоядерные системы
- •10.4 Тенденции развития вс
- •Вопросы для самопроверки
- •11 Организация микроконтроллеров и микроконтроллерных систем
- •11.1 Общие сведения о системах управления
- •11.2 Организация микроконтроллеров и
- •11.3 Области применения и тенденции развития мк
- •Вопросы для самопроверки
- •12 Организация компьютерных сетей
- •12.1 Обобщённая структура компьютерных сетей
- •12.2 Классификация компьютерных сетей
- •Вопросы для самопроверки
- •13 Стандартизация компьютерных сетей. Эталонная модель взаимодействия открытых систем
- •13.1 Понятие «открытой системы». Взаимодействие
- •13.2 Эталонная модель взаимодействия открытых систем
- •13.3 Структура блоков информации
- •7 Прикладной
- •Вопросы для самопроверки
- •Архитектура вычислительных систем. Вычисдительные машины, системы и сети
7.2 Классификация запоминающих устройств
Условное обозначение простейшего ЗУ и его типовые сигналы представлены на рисунке 7.1 /5/. Обозначение M (Memory) – устройство памяти.
A – адрес, разрядность которого n определяется числом ячеек памяти; является номером ячейки, к которой идёт обращение: , где N - количество ячеек устройства памяти.
Рисунок 7.1 – Условное обозначение и типовые сигналы
простейшего ЗУ
CS (Chip Select) – сигнал, который разрешает или запрещает работу данной микросхемы.
R/W – сигнал, задающий выполняемую операцию (при единичном значении – чтение (Read), при нулевом – запись (Write)).
DI (Data Input) и DO (Data Output) – шины входных и выходных данных, разрядность которых m определяется разрядностью ячеек запоминающего устройства. В некоторых устройствах памяти эти линии объединены (обозначаются как DIO).
Вначале подаётся адрес, чтобы последующие операции не коснулись какой-либо ячейки, кроме выбранной. Затем разрешается работа микросхемы сигналом CS и подаётся сигнал чтения/записи R/W. В зависимости от вида операции, на выходе DO формируются считываемые данные или на ходе DI готовятся данные для записи.
Классифицировать ЗУ можно по различным признакам. Рассмотрим наиболее важные из них /5/.
По способу доступа ЗУ делятся на адресные, последовательные и ассоциативные.
1) При адресном доступе код на адресных входах указывает ячейку, с которой ведётся обмен информацией. В момент обращения все ячейки адресной памяти равнодоступны. Другие виды памяти часто строят на основе адресной памяти с соответствующими модификациями. В свою очередь адресные ЗУ по организации записи делятся на оперативные - ОЗУ (RAM – Random Access Memory) и постоянные – ПЗУ (ROM – Read Only Memory).
1.1) ОЗУ хранит данные, используемые при исполнении текущей программы, которые могут быть изменены в произвольный момент времени. ОЗУ является энергозависимым устройством.
По способу хранения информации ОЗУ делятся на статические и динамические.
1.1.1) В статических ОЗУ (SRAM – Static RAM) запоминающими элементами являются триггеры, сохраняющие своё состояние, пока схема находится под питанием и нет новой записи данных. Статические ОЗУ выполняются как однопортовые (возможны одновременные обращения только к одной ячейке) и многопортовые (возможны одновременные обращения более чем к одной ячейке). Кроме того, статические ОЗУ по возможности синхронизации с процессором делятся на асинхронные и синхронные.
1.1.1.1) В асинхронных ОЗУ после произвольного по времени обращения к памяти до выдачи данных проходит определённое время, которое не синхронизировано с работой процессора. Вследствие этого могут возникать дополнительные задержки обмена данными между памятью и процессором.
1.1.1.2) В синхронных ОЗУ длительности этапов работы памяти жёстко связаны с синхросигналами системы, что позволяет исключить потери времени при обмене данными между памятью и процессором, а также организовать конвейерную обработку данных. Таким образом, синхронность памяти является средством повышения её быстродействия.
1.1.2) В динамических ОЗУ (DRAM – Dynamic RAM) данные хранятся в виде зарядов конденсаторов; при этом конденсаторы должны периодически регенерироваться. Динамические ОЗУ имеют намного более высокую информационную ёмкость и в несколько раз дешевле статических ОЗУ, которые, в свою очередь, являются более быстродействующими.
В настоящее время именно динамические ОЗУ используются как основная память вычислительных машин. Статические ОЗУ используются для построения кэш-памяти, буферной памяти и т.п.
1.2) В ПЗУ содержимое либо не изменяется, либо изменяется редко и в специальном режиме.
1.2.1) Постоянная масочная память или масочное ПЗУ (ПЗУМ, ROM(M)) является однократно программируемой памятью; информация в неё записывается на промышленных предприятиях с помощью шаблона (маски). В дальнейшем содержимое ПЗУМ не изменяется.
1.2.2) Программируемая пользователем память или программируемое ПЗУ (ППЗУ, PROM) делится на программируемую однократно и программируемую многократно. В первом случае информация однократно перезаписывается потребителем в лабораторных условиях с помощью программаторов. Во втором случае содержимое может быть изменено либо в лабораторных условиях либо в специальных режимах. Популярная в настоящее время FLASH-память относится к многократно программируемым ПЗУ, хотя и обладает рядом особенностей, позволяющих выделить её в отдельный вид памяти; более подробно будет рассмотрена ниже.
2) В устройствах памяти с последовательным доступом записываемые данные образуют некоторую очередь. Считывание происходит из очереди слово за словом либо в порядке записи (FIFO – First Input First Output), либо в обратном порядке (LIFO – Last Input First Output). Моделью такого запоминающего устройства является последовательная цепочка запоминающих элементов, в которой данные передаются между соседними элементами. По способу организации очереди последовательные ЗУ делятся на следующие виды:
2.1) Буфер FIFO (принцип описан выше).
2.2) Буфер LIFO (принцип описан выше).
2.3) Файловое ЗУ – записываемые данные объединяются в специальные блоки (файлы). Чтение данных из файлового ЗУ осуществляется в прямом порядке и начинается после обнаружения приёмником символа начала блока.
2.4) Циклическое ЗУ – данные доступны одно за другим с постоянным периодом, определяемым ёмкостью памяти. К циклическим ЗУ относятся, например, видеопамять, буфер клавиатуры.
3) Ассоциативный доступ реализует поиск информации по некоторому признаку, а не по её расположению в памяти (адресу или месту в очереди). Основная область применения ассоциативное памяти в вычислительных машинах – кэширование данных.
Среди перспективных ЗУ следует отметить /4/:
1) ЗУ ферроэлектрического типа (FRAM – Ferroelectric RAM), имеющие высокие ёмкость и быстродействие, а также обладающие свойствами энергонезависимости.
2) Магниторезисторные ЗУ (MRAM – Magnetoresistive RAM), обладающие свойствами естественной энергонезависимости, а также неразрушающего чтения.
Для более широкого внедрения указанных выше ЗУ в качестве памяти вычислительных машин необходимо решить некоторые проблемы, что требует дальнейших исследований свойств данных ЗУ /4/.
Более подробно рассмотрим принципы организации адресной памяти, памяти с последовательным доступом, ассоциативной памяти.